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In this paper, the Taguchi method was used to identify the optimum 
mixture proportions of alkali-activated reactive powder concrete 
(AARPC) by considering the most influential parameters. Five main 
parameters, including binder content, alkaline activator-binder 
ratio (Al-binder), binder-fine aggregate ratio, sodium silicate to 
sodium hydroxide ratio (Na2SiO3-NaOH), and sodium hydroxide 
(NaOH) concentration, were considered in the mixture design. 
A total of 18 trial batches were designed according to the L18 
array obtained from the Taguchi method. The results showed that 
the highest average compressive strength was 110.9 MPa (16.08 
ksi) and the lowest average compressive strength was 50.6 MPa 
(7.34 ksi). The test results of the 18 trial batches were then eval-
uated by the analysis of variance (ANOVA) method to determine 
the optimum level of each parameter. It was found that specimens 
with a binder content of 700 kg/m3 (0.025 lb/in.3), Al-binder ratio 
of 0.3, binder-fine aggregate ratio of 0.8, Na2SiO3-NaOH ratio of 
2, and NaOH concentration of 14 M produced the highest 28-day 
compressive strength (116.77 MPa [16.94 ksi]) at the ambient 
curing conditions.

Keywords: alkaline activator; compressive strength; Taguchi method; 
ultra-high-strength concrete.

INTRODUCTION
Concrete is the most widely used construction material in 

the world. Ordinary portland cement (OPC) is the primary 
material used in the production of concrete.1 However, the 
production of cement contributes approximately 5 to 7% 
of the total carbon dioxide (CO2) emissions into the atmo-
sphere.1,2 It has been reported that the production of cement 
in Australia releases 36 billion tonnes of CO2 into the 
atmosphere.3 The production of OPC is the second largest 
source of CO2 emissions worldwide, releasing approxi-
mately 0.8 tonnes of CO2 for the manufacturing of 1 tonne 
of OPC.4-7

The use of alternative binders such as industrial by- 
products can be an attractive solution for the reduction of the 
adverse environmental impact associated with the production 
of OPC. Studies into green concrete as an alternative to OPC 
concrete started a few decades ago.1,4,5 Green concrete is a 
form of eco-friendly concrete, which is manufactured using 
waste or residual materials from different industries and 
requires less energy for production. Alkali-activated concrete 
(AAC) and geopolymer concrete (GC) do not contain any 
cement, and hence they are considered green concrete. AAC 
and GC have recently gained popularity as construction 
materials.8 It should be noted that there have been disagree-
ments among the research community regarding the defini-
tion of AAC and GC.7 In general, AAC is a calcium-rich 

raw material activated with high-alkaline solutions. After the 
dissolution of the precursors, a binder paste with hydraulic 
potential is built, leading to the simultaneous formation of 
calcium-silicate-hydrate (C-S-H) gels. GC can be defined 
as covalently bonded noncrystalline networks in which 
silicate (Si) and aluminate (Al) tetrahedral frameworks are 
linked by shared oxygen to form a dense amorphous to semi- 
crystalline three-dimensional framework.9

AAC can be produced by mixing an alkaline solution with 
aluminosilicate materials such as slag cement, silica fume 
(SF), and fly ash (FA). The use of industrial by-products 
in the manufacturing of AAC and GC introduces environ-
mental and economic benefits and resolves issues related to 
the disposal of large quantities of industrial wastes such as 
slag cement from metal production and FA from coal-fired 
power stations, which may otherwise be dumped as landfills 
with adverse environmental impacts.10

Slag cement is the most common choice as the main raw 
material for the production of AAC.5 AAC is proven to have 
good mechanical properties with reduced greenhouse gas 
emissions. It not only reduces greenhouse gas emissions but 
also uses a large amount of industrial waste materials such 
as slag cement, SF, and FA.11-13

There are two main components in AAC: a source of 
aluminosilicate materials and an alkaline activator. The 
source materials of the binder used in AAC depend on the 
source of the aluminosilicate materials, which should be rich 
in aluminate (Al), silicate (Si), and calcium oxide (CaO).14 
In general, the choice of source material for the production 
of AAC depends on several factors, including cost, avail-
ability, and application. The most common alkaline activator 
used in the production of AAC is a combination of sodium 
silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions.

The effects of the Na2SiO3-NaOH ratio on the compressive 
strength of AAC and GC have not been extensively investi-
gated yet. Only a few studies have investigated the effects 
of the Na2SiO3-NaOH ratio on the compressive strength of 
AAC and GC.14-18 Some of the studies14,16,18 reported that the 
compressive strength of GC mixtures increased due to the 
increase in the Na2SiO3-NaOH ratio. Hadi et al.14 reported 
that higher content of Na2SiO3 had a positive influence on 
the early-age strength development of alkali-activated slag 
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concrete. Olivia and Nikraz16 also observed a similar vari-
ation in the compressive strength with the Na2SiO3-NaOH 
ratio for FA-based GC. Mijarsh et al.19 stated that the higher 
silica content due to a higher amount of Na2SiO3 in the 
alkaline activator enhanced the alkali-activation process 
and resulted in higher compressive strength of GC. On the 
contrary, some other studies15,17 reported that the compres-
sive strength of GC mixtures decreased with the increase 
in the Na2SiO3-NaOH ratio. Deb et al.15 and Nazari et al.17 
stated that the type of aluminosilicate source material is an 
important factor for selecting the Na2SiO3-NaOH ratio to 
achieve a higher compressive strength of GC mixtures.

Heat curing is generally used for the production of AAC. 
Hence, the application of AAC is limited mostly to precast 
concrete members.14 The production of AAC under ambient 
curing conditions will have wider applications in cast-in-
place construction as well as in precast construction. Ambient 
curing will also reduce the energy and cost associated with 
the heat-curing process in the production of AAC.14

The main parameters that affect the production and prop-
erties of AAC include aluminosilicate sources, the ratio of 
the binder content to the alkaline activator, the type of acti-
vator, the combination and concentration of the activator, 
and the curing conditions. It would be difficult to investi-
gate all these parameters in a single investigation. However, 
the influences of the parameters on the properties of AAC 
can be effectively examined by using an efficient method of 
the design of experiments, such as the Taguchi method. The 
Taguchi method has been widely used in other engineering 
applications, but the application of the Taguchi method to 
GC is very limited.14,16-18 The Taguchi method is a factorial 
design, which uses an orthogonal array (OA) for the design 
of experiments to investigate a large number of variables 
with a small number of experiments. The use of the OA 
design is a more efficient method compared to traditional 
experimental design methods.13 The OA reduces the number 
of experiments required and minimizes uncontrollable 
parameters.20 The Taguchi method uses a signal-to-noise 
ratio (S/N) for the optimization. The S/N helps in the data 
analysis and the prediction of the optimum result. The main 
advantages of the Taguchi method are efficiency, robustness, 
cost-effectiveness, and ease of interpretation of the output.16

Reactive powder concrete (RPC) is a special type of 
ultra-high-performance concrete that displays high strength, 
high durability, and high toughness. RPC is considered a 
promising construction material for civil engineering appli-
cations due to its superior properties. The superior properties 
of RPC are obtained by using very fine sand, a low water-
binder ratio (w/b), and no coarse aggregates, achieving high 
density and reduced porosity.21-23

The use of RPC in structural applications such as columns 
and beams increases the design efficiency by decreasing 
the dimensions of the concrete elements and reducing the 
volume of concrete used for the construction of the entire 
structure. RPC, however, causes adverse environmental 
impacts by increasing greenhouse gas emissions, mainly 
due to the use of a huge amount of OPC in the production 
of RPC. Even though AAC causes significantly lower green-
house gas emissions than RPC, the compressive strength 

of AAC is significantly lower.12-14 Hence, extensive inves-
tigative research is needed to develop an environmentally 
friendly ultra-high-strength concrete with superior engi-
neering properties that can be used in structural applica-
tions. An extensive review of the literature reveals that the 
development of sustainable ultra-high-strength concrete has 
not been adequately investigated.12-14 This study aimed to 
identify the optimum mixture proportions of ultra-high-
strength AAC (compressive strength > 100 MPa [14.50 ksi]) 
at 28 days by considering the influence of different param-
eters using the Taguchi method. The investigation of other 
factors—for example, shrinkage, durability, and moisture 
susceptibility—is considered beyond the scope of the paper.

RESEARCH SIGNIFICANCE
The process of the production of OPC is associated with 

high energy consumption, causing adverse environmental 
impacts. Hence, the use of alternative binders to OPC such 
as industrial by-products is considered an attractive solution 
to reduce or alleviate adverse environmental impacts. In this 
study, a new type of sustainable ultra-high-strength concrete 
at ambient curing conditions has been developed. No OPC 
has been used in the developed ambient-cured sustain-
able ultra-high-strength concrete, which is named alkali- 
activated reactive powder concrete (AARPC). The finding 
of this study will be beneficial in the design of AARPC at 
ambient curing conditions and in ascertaining the suitability 
of AARPC in structural applications.

EXPERIMENTAL DETAILS
Materials

The binder used for the production of AARPC in this study 
was slag cement, which was supplied by the Australasian 
(Iron & Steel) Slag Association.24 The bulk density of slag 
cement varies from 1050 to 1375 kg/m3 (66 to 86 lb/ft3). The 
chemical composition of the slag cement was determined 
by X-ray fluorescence (XRF) spectroscopy. The chem-
ical composition analysis of slag cement was conducted 
in the School of Earth, Atmospheric and Life Sciences at 
the University of Wollongong, Australia, and the chemical 
composition of the slag cement is presented in Table 1. 
River sand with a maximum particle size of 600 μm was 
used as the fine aggregate in this study. The bulk density of 
the sand varied from 1520 to 1680 kg/m3 (95 to 105 lb/ft3) 
and the fineness modulus was 1.75. The alkaline activator 
was a combination of sodium silicate (Na2SiO3) and sodium 
hydroxide (NaOH) solutions. Grade D sodium silicate solu-
tion (Na2SiO3) was supplied by a company in Australia.25 
The sodium silicate solution (Na2SiO3) includes 29.4% sili-
cate, 14.7% sodium oxide, and 44.1% solids (sodium salt 
and silicic acid). The density of the sodium silicate solution 
(Na2SiO3) was 1530  kg/m3 (0.055 lb/in.3). Caustic soda 
(NaOH) was dissolved in potable water to produce sodium 
hydroxide solution with different concentrations. The mass 
of NaOH pellets varied depending on the concentration of 
the solution. For example, for preparing the NaOH solu-
tion with a concentration of 12 mol/L, 480 g (1.06 lb) (12 
pellets at 40 g [0.09 lb] = 480 g [1.06 lb]) NaOH solid 
was mixed with potable water, where 40 is the molecular 
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weight of NaOH. A magnetic stirrer was used to mix the 
NaOH pellets with water. The mixture was stirred until the 
pellets were fully dissolved in the water. The NaOH solu-
tion was prepared 24 hours before the mixing of concrete. 
The Na2SiO3 and NaOH solutions were blended together for 
30 minutes before the mixing of AARPC.

Optimal mixture design of AARPC
The Taguchi method was used to design the optimum 

mixture proportions for AARPC with slag cement as an 
aluminosilicate source at ambient-curing conditions. The 
influences of five main parameters—including binder content 
(500, 600, and 700 kg/m3 [0.018, 0.022, and 0.025 lb/in.3]), 
alkaline activator-binder ratio (Al-binder) (0.30, 0.35, and 
0.40), binder-fine aggregate ratio (binder-fine aggregate) 
(0.70, 0.75, and 0.80), sodium silicate-sodium hydroxide 
ratio (Na2SiO3-NaOH) (1.5, 2, and 2.5), and sodium 
hydroxide (NaOH) concentration (12, 14, and 16 M)—were 
investigated in this study (Table 2). The Taguchi experiment 
was designed using Qualitek-4.26 The main parameters and 
their levels were selected based on the results of preliminary 
experiments conducted in the structural engineering labora-
tory at the University of Wollongong, together with the find-
ings of an extensive literature review.

The Taguchi method uses an OA to evaluate multiple 
process variables, which influence the performance char-
acteristics while, at the same time, reducing the number of 
experiments required.27 In this study, to select an appropriate 
OA for five parameters at three levels (Table 2), a total of 18 
AARPC trial batches were prepared. The component param-
eters of each of the AARPC trial batches (M1 to M18) are 
shown in Tables 3 and 4.

The optimization process using the Taguchi method 
consists of the following steps20:

1. Determine the main parameters to be evaluated.
2. Determine the number of levels for each parameter and 

possible interactions between the parameters.
3. Select the appropriate OA and assign the independent 

parameters.

4. Conduct the experiments based on the arrangement of 
the OA.

5. Calculate the S/N.
6. Analyze the experimental results using the S/N and 

ANOVA.
7. Select the optimal levels of each parameter.
8. Verify the optimal parameters through the confirmation 

experiment.

Preparation, casting, and testing of specimens
Table 5 illustrates the mixture proportions of the AARPC 

trial batches. The AARPC specimens were prepared by 
mixing the dry materials (slag cement and sand) in a pan 
mixer for approximately 2 minutes. Afterward, half of the 
alkaline activator (a combination of Na2SiO3 with NaOH) 

Table 1—Chemical compositions (mass %) of  
slag cement

Component Slag cement

SiO2 32.40

Al2O3 14.96

Fe2O3 0.83

CaO 40.70

MgO 5.99

K2O 0.29

Na2O 0.42

TiO2 0.84

P2O5 0.38

Mn2O3 0.40

SO3 2.74

LOI NA

Note: LOI is loss on ignition; NA is not available.

Table 2—Parameters and levels used in Taguchi 
experiment design

Parameters Level 1 Level 2 Level 3

(A) Binder content, 
kg/m3 500 600 700

(B) Al-binder ratio 0.30 0.35 0.40

(C) Binder-aggregate 
ratio 0.70 0.75 0.80

(D) Na2SiO3-NaOH 
ratio 1.5 2.0 2.5

(E) NaOH, M 12 14 16

Note: 1 kg/m3 = 3.61 × 10–5 lb/in.3

Table 3—AARPC trial batches based on OA for 
four parameters at three levels (L18 array)

Experiment 
series

Parameters and their levels

A B C D E

M1 1 1 1 1 1

M2 1 2 2 2 2

M3 1 3 3 3 3

M4 2 1 1 2 2

M5 2 2 2 3 3

M6 2 3 3 1 1

M7 3 1 2 1 3

M8 3 2 3 2 1

M9 3 3 1 3 2

M10 1 1 3 3 2

M11 1 2 1 1 3

M12 1 3 2 2 1

M13 2 1 2 3 1

M14 2 2 3 1 2

M15 2 3 1 2 3

M16 3 1 3 2 3

M17 3 2 1 3 1

M18 3 3 2 1 2

Total 36 36 36 36 36
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was added to the dry mixture and mixed for approximately 
3 minutes. The remaining amount of alkaline activator was 
placed into the pan mixer and mixed for approximately 
10 minutes until the mixture became homogeneous.

The fresh AARPC was then placed into polyvinyl chlo-
ride  (PVC) molds in three layers, and no difficulties 
occurred during casting. All the fresh AARPC mixtures 
were handled, placed, compacted, and finished easily. In 
each layer, the AARPC mixture was vibrated using a table 
vibrator for approximately 10 seconds to remove any air 
bubbles or voids. After casting, all specimens were covered 
with plastic sheets to retain moisture for 24 hours. The 
specimens were then removed from the molds and left in 
ambient conditions at a temperature of 23 ± 3°C (64.4 ± 
5.4°F) and relative humidity of 60 ± 10% until the day of 
testing. The compressive strength tests were performed at 
7, 14, and 28 days in accordance with AS 1012.9-1999.28 
The compressive strengths of the ambient-cured AARPC 
trial batches were evaluated using cylindrical specimens of 
50 mm (1.97 in.) diameter and 100 mm (3.93 in.) height, as 
shown in Fig. 1, using a testing machine with a capacity of 
1800 kN (404.66 kip). Cylindrical specimens with 50 mm 
(1.97 in.) diameter and 100 mm (3.93 in.) height were used 
in the experimental trial batches to avoid wastage of mate-
rials, as smaller specimens were easier to prepare and handle 
in the laboratory. For each trial batch, three specimens were 
tested; the average test results are shown in Fig. 2.

RESULTS AND DISCUSSION
Compressive strength

The compressive strength of the AARPC at 28 days was 
used as a criterion for evaluating the 18 AARPC trial batches 
(M1 to M18) designed according to the Taguchi method, as 
shown in Table 6. This is because the specimens at the age 

Table 4—AARPC trial batch parameters

Experiment 
series A B C D E

M1 500 0.3 0.7 1.5 12

M2 500 0.35 0.75 2 14

M3 500 0.4 0.8 2.5 16

M4 600 0.3 0.7 2 14

M5 600 0.35 0.75 2.5 16

M6 600 0.4 0.8 1.5 12

M7 700 0.3 0.75 1.5 16

M8 700 0.35 0.8 2 12

M9 700 0.4 0.7 2.5 14

M10 500 0.3 0.8 2.5 14

M11 500 0.35 0.7 1.5 16

M12 500 0.4 0.75 2 12

M13 600 0.3 0.75 2.5 12

M14 600 0.35 0.8 1.5 14

M15 600 0.4 0.7 2 16

M16 700 0.3 0.8 2 16

M17 700 0.35 0.7 2.5 12

M18 700 0.4 0.75 1.5 14

Table 5—Mixture proportions of AARPC trial batches

Experiment series
Binder content, 

kg/m3 Al-binder
Binder-fine 
aggregate

Fine aggregate 
content, kg/m3 Na2SiO3-NaOH Na2SiO3 NaOH NaOH, M

M1 500 0.30 0.70 714.3 1.5 90.0 60.0 12

M2 500 0.35 0.75 666.7 2.0 116.7 58.3 14

M3 500 0.40 0.80 625.0 2.5 142.9 57.1 16

M4 600 0.30 0.70 857.1 2.0 120.0 60.0 14

M5 600 0.35 0.75 800.0 2.5 150.0 60.0 16

M6 600 0.40 0.80 750.0 1.5 144.0 96.0 12

M7 700 0.30 0.75 933.3 1.5 126.0 84.0 16

M8 700 0.35 0.80 875.0 2.0 163.3 81.7 12

M9 700 0.40 0.70 1000.0 2.5 200.0 80.0 14

M10 500 0.30 0.80 625.0 2.5 107.1 42.9 14

M11 500 0.35 0.70 714.3 1.5 105.0 70.0 16

M12 500 0.40 0.75 666.7 2.0 133.3 66.7 12

M13 600 0.30 0.75 800.0 2.5 128.6 51.4 12

M14 600 0.35 0.80 750.0 1.5 126.0 84.0 14

M15 600 0.40 0.70 857.1 2.0 160.0 80.0 16

M16 700 0.30 0.80 875.0 2.0 140.0 70.0 16

M17 700 0.35 0.70 1000.0 2.5 175.0 70.0 12

M18 700 0.40 0.75 933.3 1.5 168.0 112.0 14

Note: 1 kg/m3 = 3.61 × 10–5 lb/in.3
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of 28 days achieved the highest compressive strength, which 
provided more accurate results for evaluating the mixtures.

It was observed that all the specimens achieved approx-
imately 45% of compressive strength at the age of 7 days 
and 90% of compressive strength at 14 days under ambi-
ent-curing conditions (Fig. 2), although there was a slight 
increase in the compressive strength at 28 days (Table  6), 

which confirmed their potential for the application where 
high early strength is required. Most of the slag cement 
particles were partially dissolved by the alkaline activator 
to form C-S-H gel by the geopolymerization reaction. The 
geopolymerization reaction initiates with the dissolution of 
Al and Si from the precursor materials in an alkaline environ-
ment.29 Thus, high early strength of AARPC was obtained. 
The findings of this study agree with Farhan et al.,12 in which 
it was reported that AAC developed most of the compressive 
strength at 14 days and there was a marginal increase in the 
compressive strength at 28 days.

From the experimental results, the highest average 
compressive strength (110.9 MPa [16.08 ksi]) of the 
AARPC was obtained by the M8 specimens with a binder 
content of 700 kg/m3 (0.025 lb/in.3), Al-binder ratio of 0.35, 
binder-fine aggregate ratio of 0.8, Na2SiO3-NaOH ratio of 
2, and NaOH concentration of 12 M. The lowest average 
compressive strength (50.6 MPa [7.34 ksi]) of the AARPC 
was obtained by the M5 specimens with a binder content of 
600 kg/m3 (0.022 lb/in.3), Al-binder ratio of 0.35, binder-fine 
aggregate ratio of 0.75, Na2SiO3-NaOH ratio of 2.5, and 
NaOH concentration of 16 M. It is noted that the Al-Binder 
ratio for mixtures M5 and M8 was 0.35, and the main differ-
ences were the binder content, binder-fine aggregate ratio, 
Na2SiO3-NaOH ratio, and NaOH concentration.

It is difficult to determine the optimum proportions for 
each considered parameter from the test results. Hence, 
the factorial analysis was conducted using Qualitek-426 to 
explore the influence of each parameter on the compressive 
strength of the AARPC. The compressive strengths of the 
AARPC trial batches were used in calculating the S/N. The 

Fig. 1—AARPC specimens for compressive strength tests.

Fig. 2—Compressive strength of AARPC specimens. (Note: 1 MPa = 0.145 ksi.)
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S/N helps in data analysis and prediction of the optimum 
result. The S/N ratio was computed by using Eq. (1)

	 S N
n Y

/( ) = − ∑





10
1 1

2
log 	 (1)

where Y is the experimental result (compressive strength); 
and n is the number of experiments conducted for each trial 
batch. The S/N are computed using Eq. (1) for each of the 18 
AARPC trial batches (Table 6).

The compressive strengths obtained from the AARPC 
trial batches were used in calculating the mean S/N for each 
parameter. The mean S/N of compressive strength of the 
AARPC trial batches at various parameters are shown in 
Fig. 3. The mean S/N for each parameter was determined 
by taking the average of the 28-day compressive strengths 
for the trial batches that included the considered parameter. 
For example, a binder content (Parameter A3) of 700 kg/m3  
was tested in six trial batches: M7, M8, M9, M16, M17, and 
M18 (Table 4). The S/N of the M7, M8, M9, M16, M17, 
and M18 trial batches were 39.9, 40.9, 37.2, 40.3, 36.5, and 
39.8, respectively (Table 6). The mean S/N of binder content 
(Parameter A3) was equal to 39.1 ([39.9 + 40.9 + 37.2 + 
40.3 + 36.5 + 39.8]/6 = 39.1), which was greater than the 
mean S/N for binder content of 500 kg/m3 (Parameter A1) 
and binder content of 600 kg/m3 (Parameter A2). Hence, the 
optimum binder content was 700 kg/m3. It can be seen from 
Fig. 3(a) that the binder content of 700 kg/m3 showed the 
highest mean S/N among the AARPC mixtures. The increase 
in the mean S/N with the highest binder content at 28 days 
may be due to the greater dissolution of Si, Al, and Ca 

species, which increased the extent of the alkali-activation  
process and resulted in higher compressive strength of 
AARPC.

The highest mean S/N was at an Al-binder ratio of 0.3, as 
observed in Fig. 3(b). Several studies investigated the effect 
of the Al-binder ratio on the compressive strength of AAC 
and GC.14,30-32 The test results revealed that increasing the 
Al-binder ratio resulted in lower compressive strength of 
AAC and GC. The reason for this decrease in the compres-
sive strength can be attributed to the excess alkaline acti-
vator, which caused an increase in the amount of water in the 
mixture and hindered the alkali-activation process.14

It can be seen from Fig. 3(c) that the mean S/N of the 
AARPC mixtures increased with the increase in the  
binder-fine aggregate ratio. The highest mean S/N was at a 
binder-fine aggregate of 0.8. The high calcium content in 
slag cement might have improved the compressive strength 
of the AARPC mixtures.15 This might be because the rate of 
the alkali-activation process increased due to an increase in 
slag cement content in the AARPC mixture.33 In addition, 
a higher amount of calcium in slag cement resulted in the 
formation of C-S-H gel, which contributed to the compres-
sive strength development of the AARPC mixtures.34

Based on the data obtained in this study, the highest mean 
S/N for 28-day compressive strength was achieved with a 
Na2SiO3-NaOH ratio of 2, as shown in Fig. 3(d). It is consid-
ered that for AARPC with a Na2SiO3-NaOH ratio of 2, the 
availability of more Na2SiO3 solution compared with a lower 
quantity of NaOH solution along with the presence of Al, Si, 
and Ca species in precursor materials might have increased 

Table 6—Compressive strength of AARPC trial batches

Compressive strength, MPa, at 28 days

Trial batch Specimen 1 Specimen 2 Specimen 3 Average S.D. S/N

M1 88.2 82.6 88.4 86.4 3.06 38.7

M2 101.8 106.5 104.7 104.3 0.86 40.4

M3 94.5 89.5 86.9 90.3 2.45 39.1

M4 98.9 107.0 102.4 102.8 0.87 40.2

M5 51.8 47.9 52.1 50.6 2.35 34.1

M6 87.7 85.8 87.8 87.1 1.29 38.8

M7 102.4 97.3 96.1 98.6 1.90 39.9

M8 114.8 110.4 107.4 110.9 3.20 40.9

M9 77.3 74.4 66.6 72.8 2.41 37.2

M10 79.3 80.9 78.7 79.6 2.83 38.0

M11 86.4 83.9 78.9 83.0 2.43 38.4

M12 85.3 81.1 79.9 82.1 1.90 38.3

M13 89.2 89.5 94.3 91 1.81 39.2

M14 99.2 98.3 92.9 96.8 2.13 39.7

M15 96.5 93.9 99.1 96.5 1.28 39.7

M16 104.6 107.7 99.9 104.1 1.14 40.3

M17 69.5 63.1 69.4 67.4 2.86 36.5

M18 96.8 98.2 99.0 98.0 1.81 39.8

Note: S.D. is standard deviation; 1 MPa = 0.145 ksi.
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the extent of the alkali-activation process, thus resulting in 
higher strength development of AARPC at 28 days.

Figure 3(e) shows that the mean S/N increased with an 
increase in the NaOH concentration up to 14 M. However, 
increasing the NaOH concentration beyond 14 M led to a 
reduction in the mean S/N, as shown in Fig. 3(e). At a lower 
NaOH concentration, the lower extent of the alkali-activation  
process resulted in less compressive strength of AARPC 
mixtures. However, increasing the concentration of NaOH 
solution to 14 M results in the dissolution of Si, Al, and Ca 

species to a greater extent, thereby increasing the extent of 
the alkali-activation process. This results in the formation 
of a stable aluminosilicate network along with C-S-H gel in 
the mixture, which led to the higher compressive strength 
of the mixtures.35 It was noted that the mean S/N decreases 
with an increase in the NaOH concentration with 16 M. This 
can be attributed to the variation in the nature and type of the 
molecules of the slag cement. The differences in the type of 
the molecules affect the extent of dissolution of the Si, Al, 
and CaO in the alkaline activator, as the dissolution of the 

Fig. 3—Factorial diagrams of mean S/N of 28-day compressive strength of AARPC.
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Si is slower than the dissolution of the other components of 
slag cement, which results in a lower extent of the alkali- 
activation process.36

Finally, the results were evaluated by ANOVA to deter-
mine the percentage of participation of the considered 
parameters and the optimum level of each parameter. The 
percentage of participation of the considered parameters and 
the optimum level of each parameter are shown in Fig. 4 and 
Table 7. It can be seen in Fig. 4 that the Al-binder ratio is the 
most significant parameter that influences the AARPC, with 
a percentage of participation of 62.5%. The Al-binder ratio 
of 0.30 was found to be the optimum level. This is due to 
the comparatively denser microstructure of AARPC, which 
produces a more homogenous microstructure with fewer 
pores. It is noted that investigations on the microstructure of 
AARPC are considered beyond the scope of this study and are 
part of future research investigations. It can be observed that 
the second important parameter that influences the AARPC 
is the NaOH concentration, with a percentage of participa-
tion of 18.8%. The NaOH concentration of 14 M was found 
to be the optimum level. The third influential parameter is 
the binder content, with a percentage of participation of 
8.2%. The binder content of 700 kg/m3 (0.025 lb/in.3) was 
found to be the optimum level. The binder-fine  aggregate 
ratio and Na2SiO3-NaOH ratio have the lowest percentages 
of participation of 4.9% and 5.6%, respectively. The binder- 
fine aggregate ratio of 0.8 was found to be the optimum 
level. The NaOH-Na2SiO3 ratio of 2 was found to be the 
optimum level. It is noted that the optimal values obtained 
in this study are dependent on the range of values of the five 
main parameters used in this study.

Verification experiment
The Taguchi method has been used to identify the 

optimum mixture proportions of AARPC by considering 
the most influential parameters. To confirm the test results, 
an additional mixture, M19, was prepared and tested using 
cylindrical specimens of 100 mm (3.93 in.) diameter and 
200 mm (7.87 in.) height considering the optimum levels of 
the parameters (binder content of 700 kg/m3 [0.025 lb in.3]), 
Al-binder ratio of 0.3, binder-fine aggregate ratio of  0.8, 
Na2SiO3-NaOH ratio of 2, and NaOH concentration of 14 M) 
presented in Table 7. The average compressive strength 
of M19 was 45.2, 108.2, and 116.8 MPa (6.56, 15.69, and 
16.94 ksi) at 7, 14, and 28 days, respectively. The average 
compressive strength of M19 was greater than the average 
compressive strength of the 18 AARPC trial batches (M1 
to M18).

CONCLUSIONS
Based on the results of this experimental investigation, the 

following conclusions are drawn:
1. Industrial by-products such as slag cement can be 

advantageously used in producing sustainable ultra-high-
strength concrete (alkali-activated reactive powder concrete 
[AARPC]) with compressive strength higher than 100 MPa 
(14.50 ksi) at 28 days under ambient curing conditions.

2. The AARPC with a binder content of 700 kg/m3 
(0.025 lb/in.3), Al-binder ratio of 0.3, binder-fine aggregate 
ratio of 0.8, Na2SiO3-NaOH ratio of 2, and NaOH concen-
tration of 14 M achieved the highest 28-day compres-
sive strength (116.8 MPa [16.94 ksi]) at ambient-curing 
conditions.

3. All the AARPC specimens achieved 90% of compres-
sive strength at the age of 14 days, which confirmed their 
potential for applications where high early strength is 
required.

4. The Al-binder ratio had the most significant influence 
on the compressive strength of AARPC, with a percentage 
of participation of 62.5%. A lower Al-binder ratio (0.3) 
produced higher compressive strength of AARPC speci-
mens. This is due to the comparatively denser microstructure 

Fig. 4—Percentage of participation of considered parameters on compressive strength of AARPC.

Table 7—Percentage of participation and optimum 
levels of considered parameters of 28-day 
compressive strength

Parameter
Binder 
content Al-binder

Binder-fine 
aggregate

Na2SiO3-
NaOH NaOH

Optimum 
level 700 kg/m3 0.30 0.8 2 14 M

Note: 1 kg/m3 = 3.61 × 10–5 lb/in.3
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of AARPC, which produces a more homogenous micro-
structure with fewer pores.

5. The binder-fine aggregate ratio and Na2SiO3-NaOH 
ratio have the lowest significant parameter that influences 
the AARPC, with a percentage of participation of 4.9% and 
5.6%, respectively. The binder-fine aggregate ratio of 0.8 
was found to be the optimum level. The Na2SiO3-NaOH 
ratio of 2 was found to be the optimum level.
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Proponents of water-soluble chloride testing argue that only chlo-
rides in the pore solution contribute to corrosion and that this 
testing is more representative of free chlorides and therefore should 
be required. Proponents of acid-soluble chloride testing argue that 
although water-soluble testing may be more representative of free 
chlorides in the pore solution at early ages, bound chlorides can 
become unbound with time, making the water-soluble test uncon-
servative for predicting later-age free chlorides. However, water- 
soluble testing likely unbinds some admixed chlorides during 
testing. If the number of chlorides released as part of the water- 
soluble test exceeds the number of chlorides released at later 
ages (that is, from carbonation), the water-soluble test should be 
sufficiently conservative. This research quantifies the release of 
admixed chlorides as a result of testing and carbonation. Results 
indicate that water-soluble testing is sufficiently conservative in 
most cases for assessing admixed chloride contents in various 
cementitious systems.

Keywords: admixed chlorides; bound chlorides; carbonation; chloride 
release; chloride testing; specialty cements.

INTRODUCTION
The presence of chlorides in sufficient quantities in 

a cementitious system can disrupt the passive layer on 
embedded steel reinforcement, which protects this reinforce-
ment from corrosion. Chlorides in concrete can increase 
the risk of corrosion and reduce the service life of these 
structures. Chlorides can be present in the concrete constit-
uent materials, intentionally added to the fresh mixture, or 
can be transported into the cementitious system from the 
surrounding environment.

Chlorides in the fresh mixture—that is, the admixed 
chlorides—can react during the cement hydration process, 
and some can become bound within the hydrated products. 
The binding of these chlorides can influence whether the 
concrete meets specifications for chloride limits and whether 
these chlorides can contribute to corrosion initiation of the 
reinforcing steel in the concrete. Bound chlorides that are 
physically (loosely) or chemically (tightly) bound in or on 
the hydrated cement products are initially unavailable for 
corrosion initiation and propagation. However, free chlo-
rides—that is, chlorides that are present in the pore solution 
of the cementitious system—do contribute to corrosion initi-
ation and propagation. The sum of the free and bound chlo-
rides in the cementitious system represents the total admixed 
chlorides. Although the total admixed chlorides could be 
constant with time (assuming no external chloride expo-
sure), the amount of free and bound chlorides could change 
with time and with exposure to CO2 or sulfates. Knowing the 

time variant, free and bound chlorides under different expo-
sure conditions can assist users in selecting an appropriate 
test that will provide a representative estimate of later-age 
free chlorides, which will provide a better estimate of the 
future risk of corrosion and service life.

The free chlorides in the pore solution of the cementitious 
system are quantified by the extraction of the pore solu-
tion using high pressure. Longuet et al. (1973) developed 
the pore extraction method, and this process has been used 
by many researchers to extract pore solutions from cemen-
titious systems (Barneyback and Diamond 1981; Page and 
Vennesland 1983; Arya et al. 1987; Dhir et al. 1990; Haque 
and Kayyali 1995; Pavlík 2000; Plusquellec et al. 2017). 
Longuet et al. (1973) provided a method to express the pore 
solution from crushed cement pastes. The general process 
reported is to crush a cementitious sample into manage-
able sizes, place this crushed cementitious material into 
the extraction equipment, place a load on the equipment to 
extract the pore solution, then collect and analyze this pore 
solution. One drawback of this method is that it is not yet 
standardized and statistics and error measures are needed.

ASTM C1218/C1218M-17 is a standardized test 
commonly reported to be an indicator of free chlorides. This 
test is performed by mixing 10 g (0.35 oz.) of powdered 
samples with 50 ± 1 mL (1.7 ± 0.034 fl oz.) of reagent water. 
The sample is then boiled for 5 minutes and allowed to stand 
for 24 hours for chloride extraction. After filtering residues 
from the sample, the filtrate is mixed with 3 mL (0.1 fl oz.) 
of 1:1 nitric acid and 3 mL (0.1 fl oz.) of 30% hydrogen 
peroxide. After 2 minutes, the sample is boiled again for 
several seconds, then after cooling to room temperature, is 
tested for chlorides using manual potentiometric titration 
following ASTM C114 requirements. Arya et al. (1990) 
distinguished between the pore solution and water-soluble 
chlorides and reported that although pore solution chlorides 
are more representative of the free chlorides, some loosely 
bound chlorides are released during water-soluble chlo-
ride testing. Shakouri et al. (2018) reported that the pore 
solution results are, on average, 77% of the water-soluble 
results. This finding is in line with the findings of Arya et 
al. (1990). Therefore, results from water-soluble chloride 
testing are generally higher than results from pore solution 
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chloride testing, and water-soluble testing likely causes the 
unbinding of bound chlorides and thereby overestimates the 
number of free chlorides.

ASTM C1152/C1152M-04 is commonly reported to be an 
indicator of total chlorides. Shakouri et al. (2018), Trejo et al. 
(2019), and Trejo and Ahmed (2019) reported that ASTM 
C1152/C1152M detects, on average, approximately 94%, 
93%, and 95% of the total admixed chlorides in ordinary 
portland cementitious (OPC) systems, respectively. These 
results indicate that acid-soluble chloride testing slightly 
underestimates the total chlorides, but even so, is likely a 
good indicator of total chlorides.

Water-soluble testing, following ASTM C1218/C1218M, 
is common practice for evaluating admixed chlorides in 
concrete. Several ACI documents also allow acid-soluble 
testing (ASTM C1152/C1152M). Some of these documents 
note that acid-soluble chloride testing is likely more appro-
priate because chlorides can be released at later ages because 
of carbonation, and that water-soluble testing may underesti-
mate the number of chlorides released as a result of carbon-
ation. Very little research has been performed to assess how 
much of the bound admixed chlorides are released during 
water-soluble chloride testing. In addition, very little research 
has been performed to quantify the number of chlorides that 
are released because of carbonation. The objective of this 
research is to quantify these chloride releases for different 
cementitious systems to determine if water-soluble testing is 
conservative or unconservative for estimating chlorides that 
can be unbound at later ages because of carbonation.

Dhir et al. (1990) performed acid- and water-soluble testing 
to evaluate the chloride content of OPC concrete specimens 
containing admixed chlorides. The authors reported that the 
acid extraction method yielded up to 70% more chlorides 
than the conventional water-soluble method (water-soluble 
to acid-soluble test ratio is ~0.6). The authors also reported 
that water-soluble chlorides provided an immediate indica-
tion of corrosion risk and that acid-soluble chlorides can be 
used to evaluate the overall risk of corrosion of the cemen-
titious systems when exposed to carbonation. However, if 
water-soluble testing extracts some of the bound chlorides 
as reported by Shakouri et al. (2018) and Arya et al. (1990), 
water-soluble chloride testing may be sufficiently conserva-
tive to evaluate “overall risks,” as referred to by Dhir et al. 
In addition, the ACI 222 documents (ACI Committee 222 
2010, 2019) report that the average content of water-sol-
uble chlorides is approximately 75 to 80% of the acid-sol-
uble chlorides; that is, the acid-soluble test yields 25 to 
33% more chlorides than the water-soluble test. Trejo et al. 
(2019) reported that results from the water-soluble tests can 
range from 8 to 77% of the acid-soluble tests for various 
cementitious systems and reported that the range published 
in ACI 222R-01(10) was in most cases incorrect for admixed 
chlorides.

Knowing the amount of free and bound chlorides is 
important as this information can influence material accep-
tance and future corrosion performance. However, the 
amount of free and bound chlorides can change with time 
and knowing the free, bound, or total chlorides in new 
concrete provides limited information on these chlorides at 

later ages. The concentration change in free and bound chlo-
rides is related to the carbonation of cementitious systems. 
Because bound chlorides can be released under certain 
exposure conditions, researchers have recommended that acid- 
soluble chloride testing be used to assess the overall risk of 
corrosion (Vesikari 2009; Geng et al. 2016). However, this 
would be appropriate only if nearly all bound chlorides were 
released upon carbonation at later ages. If only a very small 
number of chlorides are released upon carbonation, using 
acid-soluble chloride testing could significantly overesti-
mate the later-age free chlorides and could be overly conser-
vative. What is more important in selecting an appropriate 
test method is whether the results from that test method are 
representative of the free chlorides at later ages after carbon-
ation. If the number of bound chlorides released from water- 
soluble testing exceeds the number of chlorides released as 
a result of carbonation, the water-soluble test would be a 
more appropriate test to assess free chlorides at later ages 
and potential risk of corrosion (that is, after carbonation). 
Alternatively, if the number of free chlorides after carbon-
ation exceeds the number of bound chlorides released from 
water-soluble testing, the acid-soluble test may be the more 
appropriate test. The objective of this research is to identify 
the most appropriate chloride test that minimizes corrosion 
risk for OPC and specialty cements.

One significant variable that affects the binding of chlo-
rides in cementitious systems is the hydration products of 
the cementitious system. When chlorides are included in the 
fresh mixture, binding of chlorides occurs during the process 
of forming these hydration products. Page and Vennesland 
(1983) reported that the hydration products of OPC bind 
approximately 60% of the total admixed chloride content. 
The authors also reported that after the addition of chlorides 
to the fresh mixture, these chlorides can be bound through 
chemical substitution or physical sorption to the OPC 
hydration products. Hirao et al. (2005), Florea and Brou-
wers (2012), and Geng et al. (2016) also reported that when 
chlorides are intentionally added to a fresh OPC mixture, 
chlorides will react with monosulfate to form Friedel’s 
salt (C3A·CaCl2·H10), or these chlorides can be physically 
adsorbed onto the outer layers of calcium-silicate-hydrate 
(C-S-H) gel. Friedel’s salt, in turn, can physically interact 
with chlorides through ion exchange, dissolution, and precip-
itation, and because of its large surface area, can further 
bind chlorides. Florea and Brouwers (2012) reported that 
C-S-H could bind between 25 and 28% of the total admixed 
chlorides and monosulfate hydrate can bind up to approxi-
mately 70% of the total admixed chlorides. The authors also 
noted that ettringite and calcium hydroxide exhibit minimal 
binding capacities. However, Arya et al. (1990) reported that 
chlorides could react with the ettringite to produce calcium 
chloroaluminate.

Calcium aluminate cement (CAC) systems and calcium 
sulfoaluminate cement (CSA) are two common specialty 
cement systems. These systems exhibit different hydration 
products than that of OPC; therefore, the chloride binding 
capacities of these cements could be different from OPC 
systems.
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The primary hydration products of CAC are CAH10 and 
small amounts of C2AH8 with AH3. These products convert 
to C3AH6 with time, depending on time and temperature, 
where high temperatures increase this conversion rate. 
Limited research has been performed to assess the binding 
of chlorides in CAC systems. Sanjuán (1997) studied the 
conversion of CAC with the presence of admixed chlo-
rides. The author reported that Friedel’s salt is formed when 
the hexagonal-shaped CAH10 converts to the cubic C3AH6 
through dissolution, and the formation of Friedel’s salt 
could occur through the replacement of hydroxide anions 
in the cubic-shaped C3AH6 with chloride anions. Ann et al. 
(2010a,b) reported that low-alumina CAC systems exhibit 
lower chloride-binding capacities than OPC systems and 
attributed this lower binding to the lower level of hydra-
tion products that bind chlorides. The authors also reported 
that CAC is resistant to the release of bound chlorides, even 
at low pH levels. Later, Ann and Cho (2014) investigated 
the binding of chlorides in OPC and CAC systems and 
concluded that the binding of chlorides in CAC is lower than 
that of OPC.

Zhang and Glasser (2002), Winnefeld and Lothenbach 
(2010), and Zajac et al. (2016) reported that the main hydra-
tion products of CSA cement are ettringite (CaO·Al2O3· 
3CaSO4·32H2O) and calcium monosulfate (3CaO·Al2O3· 
CaSO4·12H2O), along with amorphous aluminium hydroxide 
(AH3). Calcium monosulfate hydrate forms in the presence 
of lower CaSO4 quantities, whereas ettringite forms in the 
presence of higher CaSO4 quantities.

CSA systems have been reported to exhibit higher chloride- 
binding capacities than OPC systems. Ioannou et al. (2015) 
assessed concrete samples with a CSA-fly ash cement blend 
and reported that the binding of chlorides increased in the 
ettringite-rich environment. Monosulfate quantities in the 
CSA system are higher than that of OPC and therefore these 
systems can exhibit higher binding capacities. Hirao et al. 
(2005), Florea and Brouwers (2012), and Geng et al. (2016) 
all reported that calcium monosulfate, even in small quan-
tities, exhibits high binding capacities. Therefore, the high 
binding capacities reported for CSA systems seem to be 
attributed mostly to the presence of calcium monosulfate.

This literature review indicates that CSA systems could 
initially bind more chlorides than OPC systems, while CAC 
systems likely initially bind less chlorides than OPC systems. 
The binding of chlorides is a critical parameter because the 
number of chlorides that are bound could influence whether 
certain concrete mixtures meet allowable chloride limits, and 
the number of free chlorides could influence future corrosion 
activity. Because the number of free chlorides could be a 
time-variant function (that is, it changes when carbonation 
occurs), accurately measuring these free and bound early- 
and later-age chlorides is important. If a cementitious system 
can bind all chlorides at early ages but all these chlorides are 
later released, the value of the results from early-age testing, 
which indicated no free chlorides, would be limited. It is well 
known that free chlorides are responsible for corrosion initi-
ation and propagation. The water-soluble test method is a 
derived method that is believed to measure the free chlorides. 
However, some bound chlorides are released during testing. 

The conservativeness of this test for predicting later-age free 
chlorides and eventual risk of corrosion is unknown, espe-
cially when the number of free chlorides increases when the 
cementitious system is exposed to carbonation. Knowing 
the amount of released chlorides after exposure to carbon-
ation can help in determining the most appropriate testing to 
assess the later-age free chlorides.

The carbonation of OPC systems is a chemical reaction 
between gaseous CO2 and calcium-bearing phases such as 
Ca(OH)2 and C-S-H. CO2 gas can be transported into the 
cementitious system matrix and change the chemical makeup 
by attacking the soluble Ca(OH)2 to form calcium carbonate, 
CaCO3, and water. Geng et al. (2016) assessed the release of 
bound chlorides in OPC under the exposure of carbonation 
and reported that carbonation of OPC resulted in the release 
of bound chlorides due to the decomposition of Friedel’s salt 
and C-S-H gel, leading to an increase of free chlorides.

Pérez et al. (1983), Blenkinsop et al. (1985), and Vasudevan 
and Trejo (2022) reported that CAC exhibits a higher rate of 
carbonation than OPC because of the lower pH of the CAC 
pore solution. It has been reported that carbonation of CAC 
can rapidly decrease the pore solution pH. Fernández-Carrasco 
et al. (2001) reported that the carbonation of CAC decreases 
the porosity through the formation of the CaCO3 poly-
morphs, vaterite, and aragonite in the pores. In addition to 
the formation of CaCO3, conversion is inhibited because the 
carbonation rate of hexagonal calcium aluminates, CAH10 
and C2AH8, is faster than that of the cubic aluminate, C3AH6. 
Therefore, carbonation can inhibit the conversion of CAC 
systems by reducing the number of aluminates that can be 
converted. Goñi and Guerrero (2003) studied the influence 
of accelerated carbonation on the stability of Friedel’s salt 
and the number of free chlorides in the pore solution of the 
CAC system and reported that the carbonation of Friedel’s 
salt did not increase the free chlorides in the pore solution.

The hydration products of CSA systems have also been 
reported to decompose when exposed to CO2. Mesbah et al. 
(2012) reported that under increasing CO2 concentrations, 
calcium monosulfate hydrate can react to form calcite. 
Nishikawa et al. (1992) reported that when CSA is exposed 
to CO2, ettringite dissolves into gypsum, calcium carbonate, 
and alumina gel. Robl et al. (1996) reported that calcite 
replaces gypsum when exposed to CO2. Therefore, carbon-
ation can result in the decomposition of the hydration prod-
ucts in CSA cementitious systems, possibly resulting in the 
release of bound chlorides.

Mesbah et al. (2012) reported that Friedel’s salt forms from 
the reaction of chlorides and monosulfate in CSA cemen-
titious systems. Suryavanshi and Swamy (1996) reported 
that chlorides can be disassociated from Friedel’s salt upon 
exposure to carbonation, and this could increase free chlo-
ride levels and elevate the risk of corrosion. Canonico et al. 
(2012) reported that the carbonation rate of CSA could be 
higher than that of OPC because of the low pH of the CSA 
pore solution. The literature indicates that the decomposition 
of the hydration products of CSA because of carbonation can 
release bound chlorides. However, how much bound chlo-
rides are released is not known.
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A review of the literature indicates that carbonation can 
increase the number of free chlorides in the pore solution of 
OPC cementitious systems. The review also indicates that 
the carbonation rates of CAC and CSA systems are typi-
cally higher than OPC systems and these higher rates could 
influence the rate and degree of release of bound chlorides. 
Knowing the number of bound chlorides that are released 
when exposed to CO2 is important in assessing the risk of 
corrosion and service life of a structure. The objective of 
this paper is to first determine the number of bound chlo-
rides that are released during water-soluble and acid-soluble 
testing and then to compare the amount of released chlo-
rides with the number of chlorides that are released upon 
carbonation. If the number of bound chlorides released due 
to carbonation is less than or near the number of bound 
chlorides released from water-soluble testing at early ages, 
water-soluble testing should be used for assessing allowable 
chloride limits. If the number of bound chlorides released 
as a result of carbonation is more than the number of bound 
chlorides released from water-soluble testing at early ages, 
acid-soluble testing should be used. The results from this 
research will be used to identify the appropriate test method 
(water-soluble or acid-soluble) that should be used to assess 
allowable chloride limits to minimize risk of corrosion.

This study contains three parts. First, the study will 
assess the amount of early-age free chlorides using results 
from pore extraction and water-soluble testing for OPC, 
CAC, and CSA systems and will quantify how much of the 
bound admixed chlorides are released because of the ASTM 
C1218/C1218M (water-soluble chloride test) procedure. 
Second, the study will quantify the number of free chlorides, 
using water-soluble testing, of carbonated OPC, CAC, and 
CSA systems. This will provide data on how much chlo-
rides are released because of carbonation. Lastly, using the 
information from the first two objectives, this research will 
identify the test that is most representative of later-age free 
chlorides of carbonated cementitious systems. The authors 
anticipate that this research will provide information to 
resolve the long debate on whether water- or acid-soluble 
testing is more appropriate for assessing admixed chlorides 
in different cementitious systems.

RESEARCH SIGNIFICANCE
Debate exists as to whether admixed chlorides should 

be quantified with water- or acid-soluble testing. Because 
free chlorides in cementitious systems change with time and 
degree of carbonation, selecting an appropriate test method 
influences the risk associated with later-age corrosion. When 
chlorides become unbound, the risk of corrosion increases. 
This study quantifies the number of admixed chlorides 
released because of standardized water-soluble testing and 
as a result of carbonation exposure for various cementitious 
systems. These data provide information to determine if 
water-soluble testing is sufficiently conservative and more 
appropriate for assessing admixed chlorides in new concrete.

EXPERIMENTAL PROGRAM
A full factorial design was used to assess the influence of 

four testing parameters on chloride measurements. The four 

testing parameters include the type of cementitious system, 
the percentage of total admixed chlorides by mass of cement 
(Cltotal), the water-cement ratio (w/c), and the status of the 
cementitious system (uncarbonated or carbonated). The 
concentration of water-soluble chlorides was evaluated as 
the dependent variable. OPC, CAC, and CSA systems were 
assessed. Four levels of Cladded by mass of cement (0, 0.05, 
0.25, and 1%) and three levels of w/c (0.35, 0.45, and 0.55) 
were evaluated. Because background chlorides were present 
in the constituent materials, the total chloride concentra-
tion, Cltotal, is defined as the sum of Clbackground and Cladded. 
A total of 36 (three types of cementitious systems × four 
Cladded percentages × three w/c levels) scenarios for uncar-
bonated and carbonated cementitious systems were assessed 
with five replicates for each scenario (total of 360 samples) 
using a modified ASTM C1218/C1218M (auto-titration was 
used instead of manual titration). All chloride concentration 
tested following ASTM standards used the equations in the 
standards to quantify chloride concentrations. The pore solu-
tion chlorides (Clpore-uncarb) obtained through extraction for 
each w/c and Cltotal level were evaluated using one sample. 
Note that this study assumes that the pore extraction method 
represents the early-age free chlorides. It should be noted 
that pore extraction could result in the release of some 
bound chlorides but as reported, chloride concentrations in free 
water-soluble testing are generally significantly higher than 
chloride concentrations from pore solution extraction.

Materials
The materials used to prepare paste mixtures in this study 

included an OPC, a standard-grade CAC, and a commercial 
CSA. The oxide compositions of the cements were deter-
mined using X-ray fluorescence (XRF) analysis and are 
reported by Ahmed and Trejo (2020). The manufacturers 
reported that the chemistry of the cements and other charac-
teristics meet standard requirements.

Primary standard reagents, NaCl (>99.9% purity) and 
AgNO3 (≥99.80% purity), were used to prepare chemical 
solutions. The same NaCl was also used as the admixed 
chlorides. The mixing water was Type II reagent water that 
met ASTM D1193 requirements. All chemical solutions 
were prepared with the same reagent water.

Background chloride quantities for each cementitious 
system and w/c are shown in Table 1. These background chlo-
rides were determined following ASTM C1152/C1152M but 
using auto-titration instead of manual titration.

Specimen preparation
A total of 180 cylindrical specimens with diameters and 

heights of 34.3 x 52.1 mm (1.35 x 2.05 in.), respectively, 
were prepared. Two test samples were cut from each cast 
specimen. In addition to these specimens, three cube spec-
imens with dimensions of 50.8 x 50.8 x 50.8 mm (2 x 2 x 
2 in.) were prepared from each mixture to determine the 
chloride content and pH of the pore solution using the pore 
extraction test. Prior to mixing, NaCl was premixed with the 
mixing water at the predefined levels.

Cement pastes were prepared following the procedure 
prescribed by ASTM C305-14. Cement paste mixtures 
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were mixed in the laboratory under an ambient temperature 
of 22°C (73°F). To prevent bleeding of the paste mixtures, 
cement pastes were cast in sealed vials and rotated along 
their longitudinal axis at 30 rpm for 10 hours. The addi-
tion of NaCl retarded the final setting time of CAC pastes. 
Therefore, the CAC specimens with 0.25% and 1% admixed 
chloride levels were removed from the vials after 48 hours. 
OPC and CSA specimens were removed from the vials after 
24 hours. All specimens were moist-cured at 22°C (73°F) for 
28 days after casting.

At the end of the curing period, specimens were cut into 
two disc samples with thicknesses of 6 mm (0.24 in.) for 
carbonation exposure assessment. This disc thickness was 
selected to ensure that sufficient material was available 
for chloride testing and to ensure that these discs could be 
fully carbonated in a reasonable time. Specimens and disc 
samples were air-dried for 24 hours in the laboratory to 
remove surface moisture prior to CO2 exposure.

Disc samples were subjected to accelerated carbonation 
in an environmental chamber with 20% CO2, ±65% rela-
tive humidity (RH), and 20°C (68°F). The RH was main-
tained using saturated salt solution in accordance with 
ASTM E104-02. The remaining samples from the cut spec-
imens were tightly sealed with plastic wrap and stored in 
the laboratory (~22°C [73°F]) to prevent carbonation. The 
carbonated and uncarbonated samples were then ground into 

powders passing a No. 20 (850 µm) sieve and evaluated for 
water-soluble chlorides.

Carbonated samples were tested for water-soluble chloride 
concentration after the entire depth of the disc was carbon-
ated. The depth of carbonation was determined in accor-
dance with CPC-18 (1988). Disc samples were split along 
the longitudinal axis to expose the fractured section and 
sprayed with phenolphthalein solution to confirm complete 
carbonation.

The pore solution was extracted using the pore extraction 
method. A cube specimen was removed from curing, sealed 
with plastic wrap, placed in a sealed plastic bag, and stored 
in a freezer to inhibit hydration until the extraction of pore 
solution. In this test, another cube specimen from each 
mixture was dried to a constant weight in a laboratory oven 
at 105°C (221°F) to determine the amount of evaporable 
water. The amount of evaporable water was then used to 
determine the percentage of free chlorides in the pore solu-
tion by the mass of cement. Samples were then crushed for 
pore solution extraction. The pH of the expressed pore solu-
tion was measured within 1 hour after extraction. The pH 
measurements were performed using a benchtop pH meter 
with a pH electrode.

RESULTS AND DISCUSSION
In this study, different cementitious systems were subjected 

to full carbonation. The time to complete carbonation is 
shown in Fig. 1. The results indicate that the rate of carbon-
ation for the OPC system is lower than the carbonation rates 
for the CAC and CSA systems. The results also indicate that 
the rate of carbonation is influenced by the w/c and the Cltotal 
level. Interestingly, higher admixed chloride concentrations 
seem to reduce the rate of carbonation. Lower carbonation 
rates are observed at lower w/c values and higher Cltotal 
levels in all systems. This is because systems with a lower 
w/c have lower porosity values and increased tortuosity. In 
addition, it has been reported that cementitious systems with 
higher levels of Cltotal can have higher early-age strengths 
and lower porosities (Abrams 1924), which could reduce 
carbonation rates.

Results and discussion from the experimental program will 
be separated into early-age (pre-carbonated) and later-age 
(post-carbonated) analyses. A comparison of these results 
will then be performed to assess the applicability of the test 

Table 1—Background chlorides for different 
systems

Cementitious system w/c
Background chlorides,  
% by mass of cement

OPC

0.35 0.007

0.45 0.002

0.55 0.008

CAC

0.35 0.008

0.45 0.007

0.55 0.006

CSA

0.35 0.056

0.45 0.045

0.55 0.026

Fig. 1—Time to full carbonation as function of Cltotal level and w/c for different cementitious systems.
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methods. Linear regression statistical analysis will be used 
to compare the test results (as percent by mass of cement).

Chloride testing of uncarbonated specimens
To assess the number of free chlorides in uncar-

bonated specimens, the chloride concentrations from 
the pore press method (that is, Clpore-uncarb) and the 
water-soluble test method before carbonation (Clws-uncarb)  
are compared. Figure 2 shows the Clpore-uncarb and the 
Clws-uncarb for the different cementitious systems as a 
function of the w/c and Cltotal levels. Here, Clpore-uncarb  
and Clws-uncarb are represented as a percentage of the total 
chloride concentration (Cltotal), where Cltotal is the sum of 
Cladded and Clbackground in the cementitious samples. Results 
indicate that the percentages of Clpore-uncarb and Clws-uncarb  
generally increase with increasing w/c and Cltotal levels for 
the OPC system. Results also indicate that the percentages of 

Clpore-uncarb and Clws-uncarb generally decrease with an increase 
in w/c and Cladded levels for the CAC and CSA systems. This 
reduction in chloride concentrations could be attributed to 
the increased hydration of the mixtures with higher w/c 
values. Results indicate that Clpore-uncarb < Clws-uncarb for all 
cases. A two-sample t-test indicates that there is a significant 
difference between Clpore-uncarb and Clws-uncarb for OPC, CAC, 
and CSA. The two-sample t-test p-values at a 0.05 signifi-
cance level for all systems were less than 0.0001.

The number of bound chlorides released as a result of 
water-soluble testing, Clreleased-ws testing, can be estimated as 
follows

	 Cl Cl Clreleased ws testing ws uncarb pore uncarb-  - -= − 	 (1)

The values of Clreleased-ws testing are shown in Fig. 3. The 
results indicate that the chloride concentrations determined 

Fig. 2—Comparison of pore solution chlorides (Clpore-uncarb) and water-soluble chlorides (Clws-uncarb) for different uncarbonated 
cementitious systems.

Fig. 3—Amount of bound admixed chlorides released as result of water-soluble testing.
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using the water-soluble test are significantly higher than the 
free chloride results using the pore extraction test. For OPC 
systems, the water-soluble chloride test results overestimate 
the free chlorides as measured by pore extraction testing by 
up to approximately 20% of total admixed chlorides. For 
the CAC systems, the water-soluble test overestimates the 
free chlorides by up to approximately 30% of total admixed 
chlorides, and for CSA systems, the water-soluble chloride 
test overestimates the free chlorides (as measured with the 
pore solution extraction) by up to approximately 50%. These 
results indicate that the water-soluble testing regime extracts 
more bound chlorides in the CSA and CAC systems when 
compared to the OPC system. In addition, water-soluble testing 
overestimates the number of free chlorides, as measured by 
pore extraction testing, for all systems. Note that the results 
in Fig. 2 and 3 are shown as a percentage of the total admixed 
chlorides.

Regression results indicate that Clpore-uncarb measurements 
are on average 86, 7.2, and 7.8% of Clws-uncarb measurements, 
with 95% upper confidence level values (95% UCL) of 92, 
10, and 11% for OPC, CAC, and CSA, respectively. These 
results are shown in Fig. 4. Note that the regression results 
are reported here as a percentage by mass of cement and not 
as a percentage of total admixed chlorides.

To determine how much of the bound chlorides are 
released as a result of water-soluble testing, the β values 
from Fig. 4 can be used in Eq. (1) as follows

	 Cl Clreleased ws testing A ws uncarb-  -= − ×( )1 β 	 (2)

Using this equation, it is determined that 14, 92, and 
93% of the water-soluble chlorides measured using ASTM 
C1218/C1218M were bound chlorides released as part of the 
water-soluble test procedure for the OPC, CAC, and CSA 
cementitious systems, respectively.

In general, results indicate that the number of admixed 
chlorides that are released from water-soluble chloride 
testing in CAC and CSA systems are significantly greater 
than the number of admixed chlorides that are released 
during water-soluble testing in OPC systems. If the number 
of admixed chlorides released as a result of carbonation 

is less than the number of chlorides released from the 
water-soluble testing, water-soluble testing is likely suffi-
ciently conservative for assessing admixed chlorides in 
concrete. The following section presents results on the 
amount of bound admixed chlorides released because of 
carbonation.

Chloride testing of carbonated specimens
After the chloride testing of uncarbonated samples, the 

number of free chlorides for carbonated OPC, CAC, and 
CSA systems was assessed using water-soluble testing. The 
number of chlorides released as a result of carbonation,  
Clreleased-carb, can be estimated as follows

	 Cl Cl Clreleased carb ws carb ws uncarb- - -= − 	 (3)

where Clws-carb is the number of water-soluble chlorides for 
carbonated samples. This difference represents the number 
of chlorides released as a result of carbonation. Figure 5 
shows the Clws-uncarb and Clws-carb values for the OPC, CSA, 
and CAC cementitious systems for different w/c and Cltotal 
levels.

Figure 5(a) shows that the percentage of Clws-uncarb for the 
OPC mixtures increases slightly with an increase in w/c. 
Analysis indicates this increase is not statistically signifi-
cant. This figure also shows that the percentage of Clws-uncarb 
increases with increasing Cltotal levels. In general, at lower 
total chloride concentrations, the binding of these chlorides is 
expected to be high (in other words, the number of chlorides 
as measured using water-soluble testing would be expected 
to be low); as the total chloride concentration increases, the 
binding capacity of the system is reached and the percentage 
of binding stabilizes. Lower variability in Clws-uncarb is associ-
ated with higher Cltotal concentrations; this is likely a result of 
testing at lower concentrations. Figure 5(d) shows the Clws-carb  
values for the OPC samples. The Clws-carb values for the OPC 
samples are higher than those of the uncarbonated OPC 
samples, indicating that chlorides are being released due to 
carbonation. The water-soluble chlorides increase as the w/c 
level increases, which is likely a result of increased carbon-
ation of the specimens with higher w/c values. However, at 

Fig. 4—Relationship between Clpore-uncarb and Clws-uncarb for different uncarbonated cementitious systems.
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the higher Cltotal levels, the mean Clws-carb changes negligibly, 
indicating that above some w/c value, increased carbonation 
does not occur. The variability in the measured Clws-carb is 
generally similar for different w/c and Cltotal levels.

Figure 5(b) shows the Clws-uncarb values for the CAC. 
Higher Clws-uncarb values are observed at lower w/c, and 
the Clws-uncarb decreases with increasing Cltotal levels. The  
Clws-uncarb values for the CAC specimens exhibit higher vari-
ability at lower Cltotal levels and lower variability at higher 
Cltotal levels. Figure 5(e) shows the Clws-carb values for the 
CAC. The Clws-carb values do not significantly differ from the 
Clws-uncarb values for the CAC with a w/c of 0.35. However, 
the Clws-carb values for the carbonated CAC are higher than 
that of the uncarbonated CAC with w/c values of 0.45 and 
0.55. This indicates that the w/c likely has a significant influ-
ence on the release of bound chlorides in CAC systems when 
exposed to CO2 and carbonated. In general, at each Cltotal 
level, the Clws-carb is lower at lower w/c values. The vari-
ability in chloride measurements is higher at the lower Cltotal 
levels and lower at higher Cltotal levels.

Figure 5(c) shows the measured Clws-uncarb for the CSA 
specimens. The Clws-uncarb decreases with an increase in w/c 
and a decrease in Cltotal levels. The variability in Clws-uncarb  
measurements for the CSA samples decreases with 
increasing Cltotal levels. Figure 5(f) shows the Clws-carb for the 
CSA samples. The Clws-carb values are higher than that of the 
uncarbonated CSA samples, again indicating that chlorides 
are released due to carbonation. The Clws-carb percentages of 
the carbonated CSA samples exhibited similar trends as the 
Clws-uncarb.

The differences in chloride measurements using the 
water-soluble testing methods before and after carbonation 

indicate that chlorides are being released because of carbon-
ation. The difference between pre- and post-carbonated 
samples, Clreleased-carb, is shown in Fig. 6 for the different 
cementitious systems.

Figure 6(a) shows the number of bound chlorides that 
are released in the OPC system after carbonation. Higher 
percentages of bound chlorides are released at lower Cltotal 
levels, and the w/c influences the release of bound chlorides 
at these lower Cltotal levels. The mean number of chlorides 
released after carbonation ranges from approximately 7.5 to 
47.3% of the total chlorides.

Figure 6(b) shows the concentrations of bound chlorides 
that are released after carbonation in the CAC system. 
The unbinding of chlorides due to carbonation in the CAC 
system increases with increasing w/c and is negligible for all 
Cltotal levels at a w/c value of 0.35. For the background, 0.05, 
and 0.25 Cladded levels, approximately 0 to 31.4% of the 
total chlorides are released because of carbonation. These 
changes in chloride concentrations are less than the values 
observed for OPC systems.

Figure 6(c) shows the concentration of bound chlorides 
released in the CSA system because of complete carbon-
ation. The results indicate that lower amounts of chlorides 
are released from the CSA system when compared with the 
OPC system. For the background and 0.05 Cladded levels 
(that is, the lower Cltotal levels), the change in concentration 
of chlorides increases at higher w/c values. For most cases, 
the change in concentration of released chlorides decreases 
with increasing Cltotal levels. The w/c negligibly affects the 
release of bound chlorides at the 0.25 and 1% Cladded levels 
(that is, higher Cltotal levels) for CSA systems. The mean 
amount of change in chlorides after carbonation ranges from 

Fig. 5—Comparison of water-soluble chlorides for different uncarbonated and carbonated cementitious systems (values offset 
to distinguish error bars).
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approximately 5.8 to 30.4% of the total chlorides. Note that 
these changes in values are lower than the changes observed 
in the OPC system.

Linear regression can be performed to investigate the 
relationship between Clws-uncarb and Clws-carb for the different 
cementitious systems. This regression output is shown in 
Fig. 7 and indicates that Clws-uncarb and Clws-carb are strongly 
and positively correlated. This relationship is confirmed by 
the Pearson correlation coefficient of 0.99 for OPC and CSA, 
and 0.96 for CAC. Clws-uncarb provided β coefficients with 
95% UCL of 0.85 and 0.88 for OPC, 0.8 and 0.96 for CAC, 
and 0.81 and 0.87 for CSA. Regression analysis results are 
reported by percent mass of cement because the published 
allowable chloride limits are reported using these units.

The relationship between the concentration of water-soluble 
chlorides before and after carbonation indicates that bound 
chlorides, likely tighter-bound chlorides, can be released and 
become unbound in the pore solution because of complete 
carbonation. Thus, carbonation increases the number of 
free chlorides in the cementitious system. In addition, w/c 
and Cltotal levels influence the measured water-soluble chlo-
ride values after carbonation. In general, Fig. 7 indicates 
that the Clws-carb measurements are, on average, 15, 20, and 
19% higher than the Clws-uncarb results (that is, %ΔCIws-carb = 
((1/β) – 1) × 100) for the OPC, CAC, and CSA, respectively. 
This indicates that 15, 20, and 19% of the bound chlo-
rides for the different cementitious systems can be released 
because of carbonation.

Selecting appropriate chloride test
As already noted, both ASTM C1218/C1218M 

(water-soluble chloride testing) and ASTM C1152/C1152M 
(acid-soluble chloride testing) are allowed to assess chloride 
concentrations of concrete in ACI documents. It is argued that 
acid-soluble chloride testing is likely the more appropriate 
test because chlorides can be released at later ages because 
of carbonation, and that water-soluble testing may underes-
timate the number of chlorides released as a result of carbon-
ation. Limited research has been performed to assess how 
much of the bound admixed chlorides are released during 
water-soluble chloride testing and how much of the bound 
chlorides are released because of carbonation. The objec-
tive of this research is to quantify these chloride releases for 
different cementitious systems to determine if water-soluble 

testing is sufficiently conservative. ACI documents assume 
that water-soluble chlorides are approximately 75 to 80% 
of the acid-soluble chlorides. However, Trejo et  al. (2019) 
reported that the range published in ACI 222R-01 was in 
most cases incorrect for admixed chlorides. Because of this, 
only one test should be specified in ACI documents.

This research generated data on how much of the bound 
admixed chlorides are released because of water-soluble 
testing (Clreleased-ws) and how much of the admixed chlorides 
are released when specimens are completely carbonated 
(Clws-carb). The number of admixed chlorides released as 
part of the water-soluble testing (ASTM C1218/C1218M) 
was determined to be 14, 92, and 93% of the water-soluble 
results (Clws-uncarb) for the OPC, CAC, and CSA cementi-
tious systems, respectively. The number of admixed chlo-
rides released because of carbonation (not testing) was 
determined to be 15, 20, and 19% of the water-soluble test 
results (Clws-uncarb) for the OPC, CAC, and CSA cementitious 
systems, respectively.

If the amount of bound admixed chlorides that are released 
because of water-soluble testing extraction is greater than 
the amount of bound admixed chlorides released as a result 
of carbonation, then it could be concluded that water-soluble 
testing is sufficiently conservative and can account for the 
release of bound chlorides as a result of carbonation. Alter-
natively, if the ratio of these variables is greater than unity—
that is, if

	
Cl
Cl

released ws

released carb

-

-

> 1 	 (4)

then the water-soluble test method following ASTM C1218/
C1218M could be considered sufficiently conservative.

Using Eq. (1) and (3) and substituting these into Eq. (4) 
provides the following

	
Cl Cl
Cl Cl
ws uncarb pore uncarb

ws carb ws uncarb

- -

- -

−
−

− >1 0 	 (5)

From the chloride testing of uncarbonated samples, 
regression results indicate a significant relationship between 
Clpore-uncarb and Clws-uncarb values for OPC, CAC, and CSA 
(p-value < 0.001). The relationship between Clpore-uncarb and 
Clws-uncarb values for different w/c values and Cltotal levels can 
be represented by

Fig. 6—Amount of bound chlorides released as result of carbonation.
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	 Cl Clpore uncarb A ws uncarb- -= ×β 	 (6)

From the testing of carbonated samples, regression results 
indicate a significant relationship between Clws-uncarb and 
Clws-carb values for all cementitious systems at varying w/c 
values and Cltotal levels (p-value < 0.001). This relationship 
is represented by

	 Cl Clws uncarb B ws carb- -= ×β 	 (7)

Equation (7) can also be written as follows

	 Cl
Cl

ws carb
ws uncarb

B
-

-=
β

	 (8)

Substituting Eq. (6) and (8) into Eq. (5) gives

	
Cl Cl
Cl Cl
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B
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-

-
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−

− >
β

β

1 0 	 (9)

and simplifying Eq. (9) gives
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The left part of the equation can be referred to as a measure 
of the conservativeness of the water-soluble test method for 
assessing later-age free chlorides and will be referred to here 
as the conservative factor for the water-soluble test method, 
CFws. Table 2 shows the values of βA, βB, and CFws.

These results indicate that the CFws value for OPC is 
less than zero and would be considered unconservative for 
most admixed chloride levels. However, the largest differ-
ence between the chlorides released because of carbonation 
and testing was for the background conditions, where the 
release of chlorides due to carbonation only exceeded the 
release of chlorides due to testing for the two lower chloride 
concentrations. The CFws values for both CAC and CSA are 
significantly greater than zero and thus water-soluble testing 

would be considered very conservative for both systems. 
It should be noted that specimens in this research project 
were completely carbonated to pH levels less than 9, which 
is considered severe. Although the CFws for OPC is less than 
zero, the severity of the test condition in this research likely 
makes this value slightly negative.

SUMMARY, CONCLUSIONS, AND 
RECOMMENDATIONS

The study determined that water-soluble testing, following 
ASTM C1218/C1218M, extracts some bound chlorides. The 
results indicate that 14, 92, and 93% of the water-soluble 
chlorides are likely bound chlorides in the ordinary port-
land cement (OPC), calcium aluminate cement (CAC), and 
calcium sulfoaluminate cement (CSA) systems, respec-
tively. This research also assessed how much chlorides are 
released because of complete carbonation of the cementi-
tious systems. The results indicate that 15, 20, and 19% of 
the bound admixed chlorides in the OPC, CAC, and CSA 
systems can be released because of carbonation.

This research also assessed whether the water-soluble test 
is sufficiently conservative to assess later-age free chloride 
concentrations in OPC, CAC, and CSA systems after carbon-
ation. The number of chlorides released because of carbon-
ation in the OPC system was determined to be greater than the 
number of chlorides released as part of the ASTM water-sol-
uble test method. This indicates that the water-soluble test 
may not be sufficiently conservative to estimate later-age free 
chlorides. However, because the samples were completely 
carbonated and this occurred mostly at lower admixed chlo-
ride concentrations, the water-soluble test method following 
ASTM C1218/C1218M can be sufficiently conservative. 
This indicates that water-soluble testing likely not only 
assesses “immediate” risks of corrosion, but also is sufficient 
to assess the “overall” risk of corrosion. Testing indicates 
that ASTM C1218/C1218M is sufficiently conservative to 
allow for the chlorides released due to carbonation in CAC 
and CSA systems; the amount of bound admixed chlorides 
released because of testing is significantly greater than the 
amount of bound admixed chlorides released because of 
complete carbonation.

Fig. 7—Relationship between uncarbonated and carbonated water-soluble chloride results for different cementitious systems.
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The findings of this research result in the following 
recommendations:

1. For OPC systems, there is a small risk that the amount 
of bound admixed chlorides released because of carbonation 
may exceed the amount of bound admixed chlorides released 
because of the ASTM water-soluble testing protocol. 
However, because past research has shown little correlation 
between the ASTM water-soluble and acid-soluble test results 
(Trejo et al. 2019) and the water-soluble testing accounts for 
chloride binding within the different systems, the authors 
believe the risk is relatively small and water-soluble testing 
following ASTM C1218/C1218M should be required in the 
ACI documents that specify allowable chlorides.

2. For the CAC and CSA systems assessed in this research, 
it is determined that ASTM C1218/C1218M is sufficiently 
conservative and the amount of bound admixed chlorides 
released as part of the ASTM test protocol significantly 
exceeds the amount of admixed bound chlorides released 
because of complete carbonation. This is an important 
finding as Ahmed and Trejo (2020) reported that acid-soluble 
testing following ASTM C1152 results in the formation of 
a gel-like structure in the test solution which likely binds 
chlorides. This binding of chlorides in the acid-soluble 
testing can result in an underestimation of total chlorides. In 
the same context, Ahmed and Vaddey (2021) reported that 
the concentration of acid-soluble chlorides in fully carbon-
ated OPC, CAC, and CSA paste samples is lower than the 
concentration of acid-soluble chlorides in uncarbonated 
paste samples; this indicates some binding of acid-soluble 
chlorides after carbonation.

3. Three findings suggest that water-soluble testing should 
be the required testing for background chlorides in concrete 
as a result of the following: i) there is a lack of correlation 
between water-soluble and acid-soluble test results and 
binding varies significantly; ii) the challenges associated 
with acid-soluble testing of CAC and CSA systems; and 
iii)  the results from this research indicate that the ASTM 
C1218/C1218M test procedure (water-soluble chloride 
testing) will in most cases be sufficiently conservative for 
assessing free chlorides at later ages.

Based on these findings, the authors recommend that ACI 
documents specify only water-soluble testing for assessing 
admixed chlorides. If the ASTM standard could be modified 
to extract slightly more of the bound admixed chlorides (for 
example, longer boiling time), the test standard may be suffi-
ciently conservative for all cementitious types evaluated in 
this research.
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The current paper investigates the effects of partial cement replace-
ment with nano-titanium dioxide (nano-TiO2 [NT]) in varying 
weight proportions in concrete. In the C20/25 grade of concrete, 
NT was added by weight of cement with partial replacement of 0, 
0.5, 1.5, 2.0, 2.5, and 3.0% using portland pozzolana cement. The 
physical and mechanical properties of the resulting concrete were 
assessed, as well as aspects of durability such as sorptivity and 
nondestructive tests (NDT) such as ultrasonic pulse velocity (UPV). 
Compared with the control mixture, the fresh concrete produced 
showed a drastic reduction in slump with increasing percentage 
of replacement, with a 54% reduction at a 3.0% replacement. 
Furthermore, for 1.5% NT, the compressive, flexural, and splitting 
tensile strengths peaked at 7, 28, 56, and 90 days, after which the 
values decreased. The addition of NT improved the homogeneity 
and integrity of the resulting concrete based on the UPV values. As 
the percentage of NT increased, chloride penetration decreased. 
From microstructural studies, it can be concluded that NT acts as a 
filler material and can be used as a partial replacement for cement 
in concrete up to 2% by weight.

Keywords: chloride penetration; durability; mechanical properties; 
nano-titanium dioxide (nano-TiO2 [NT]); slump.

INTRODUCTION
The use of concrete in buildings and construction may 

have begun a century ago. However, as the use of concrete 
has increased from decade to decade, extensive and effec-
tive research has been conducted on improving concrete 
properties by incorporating a wide range of supplementary 
cementitious materials such as pozzolans and nanoparticles.1 
The addition of fine fillers has been shown to alter the initial 
hydration reaction, setting time, dimensional stability, and 
strength development of cement.2 Owing to the growing 
interest in inert additives to cement, such as nano-titanium 
dioxide (nano-TiO2 [NT]), a study focusing exclusively on 
the effects of chemically inert fillers on cement hydration 
is required.3 In recent years, nanoparticles have received 
much attention, and their various forms have been shown to 
be very useful in enabling the development of stronger and 
more durable concrete with better mechanical properties.4

NT is one of the most commonly used nano-additives in 
cement-based materials.3,4 Titanium dioxide is a noncom-
bustible, odorless powder that has been widely produced and 
used in a variety of applications5 because of its high chemical 
stability, nontoxicity, anticorrosion, electrical, and superior 
photocatalytic properties.6 It exists in three stages: brookite, 
rutile, and anatase.7 Although the majority of TiO2 used to 
date has not been nanosized, the use of titania nanoparticles 
has increased significantly and is expected to surpass the use 

of conventional titanium dioxide in the coming years.8 When 
compared to conventional TiO2, NT has a 500% increase in 
the surface area.9 It is also available in extremely pure form 
(99.9%).

Several researchers5,6,10 have developed cement-based or 
asphalt-based concrete that incorporates TiO2 nanoparticles 
to increase its durability or impart certain desirable prop-
erties. Due to its chemical stability, high catalytic activity, 
and low cost, the incorporation of NT into cement-based 
materials has garnered considerable interest.8 However, its 
effects on the properties of cement-based materials are far 
from satisfactory.

Due to the strong binding property of cementitious mate-
rials, NT can be used in these materials without any addi-
tional processing.8 In addition, hardened mortars/concretes 
have porous structures that are ideal for the adsorption of NT 
particles. The three most common forms of titanium dioxide 
are rutile, anatase, and brookite. Titanium dioxide is also 
referred to as self-cleaning concrete or white concrete.11 It 
not only ensures the structural integrity of the structures, but 
also their aesthetic appearance.

According to some reports,12,13 NT can extend the service 
life of cement-based materials and thus their construction, 
resulting in long-term economic benefits.
•	 Spurred by the increasing value of sustainability, there 

is a growing interest in TiO2 use in construction mate-
rials to create photocatalytic coatings and materials.

•	 In the presence of near‐ultraviolet (UV)/UV radiation 
(hυ), oxygen, and water, a chain of photochemical 
surface reactions occur, which lead to strong oxidizing 
capability and which can oxidize NOx (NO + NO2), 
organic (volatile organic compounds [VOCs]), and 
inorganic compounds.

•	 The addition of NT provides a reduction in porosity, 
leading to pore structure refinement (smaller pores) 
while reducing clinker content.

•	 Strength is maintained while reducing clinker fraction; 
nanoparticles densify the paste structure.

Cementitious materials mixed with NT have the functions 
of air purification,11 self-cleaning,8 and disinfection,14 which 
are the reasons for their wide application in the exterior 
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surface of buildings including hospitals, restaurants, and 
airports.

There are few cases of nanoparticles being incorporated 
into cement-based concrete. Lee15 examined the characteris-
tics of cement mortars containing nanoparticles to determine 
their super-mechanical and smart (temperature and strain-
sensing) potentials. So far, however, research7,16 has mostly 
focused on establishing good mechanical performance with 
cement replacement materials at the microlevel.

Furthermore, despite being chemically inert in terms of its 
potential to directly react during cement hydration,12,13,17-19 
NT can generally improve the mechanical performance 
and durability, as well as decrease the rigidity of cementi-
tious materials.4,20-23 Moreover, the flexural fatigue perfor-
mance and abrasion resistance of concretes were reported 
to be remarkably improved with the use of TiO2 nanopar-
ticles.24 The gain in strength in this case might be related 
to the microstructural modification and the hydration accel-
eration effects of NT by providing additional surface area 
for product nucleation (that is, the boundary nucleation 
effect).19,24-27 The addition of TiO2 nanoparticles leads to 
greater homogeneity, better compaction, and reduction in 
the pore volume and the pore size of cementitious mate-
rials, which results in a remarkable reduction in permea-
bility.3,8,16,28,29 Titania nanoparticles have been also found to 
behave as an activator to accelerate the pozzolanic reaction, 
increase the rate of cement hydration, increase the intensity 
of the heat peak, and reduce the initial and final setting times 
and freezing-and-thawing damage. The mechanical proper-
ties were also enhanced with the use of NT. The addition 
of NT to cement-based materials can help them overcome 
some of their shortcomings, such as low tensile strength and 
resistance to harmful chemical penetration.

The effect of using NT in cementitious composites on 
their fresh properties, mechanical properties, and durability 
is demonstrated in this section.30 In addition, the micro-
structural properties of nano-titania-incorporated mortar and 
concrete are investigated using scanning electron micros-
copy (SEM) images. Because the final performance of 
cementitious composites is directly related to their strength 
and permeability,31 this section will concentrate on the effect 
of NT on the mechanical properties and permeability of 
cement mortar and concrete.

RESEARCH SIGNIFICANCE
The effects of NT on the strength, durability, and micro-

structure of ordinary portland cement (OPC) are investigated 
in this paper. The compressive, splitting tensile, and flexural 
strengths were used to determine the mechanical proper-
ties. Water absorption, capillary absorption, and chloride  
penetration tests were used to determine the transport 

properties. The pore structure and microstructure of the 
concrete were examined using SEM. The sorptivity, chloride 
penetration, and ultrasonic pulse velocity (UPV) character-
istics of endurance materials were investigated. The authors 
believe that this study will demonstrate that it is possible 
to obtain good-quality concrete at a slight cost increase by 
using novel materials.

Because NT improves the overall performance of cement-
based materials, as well as their durability and sustain-
ability, it reduces construction maintenance and repair costs. 
Furthermore, NT endows cement-based materials with new 
properties such as self-cleaning properties, resulting in lower 
routine cleaning and maintenance costs.20 According to some 
reports,24,32,33 NT can extend the service life of cement-based 
materials and, as a result, constructions, resulting in long-
term economic benefits.

EXPERIMENTAL PROCEDURE
Materials

The following materials were used in the experimental 
procedure. The materials, along with their physical and 
chemical properties, are given in the following tables.

Cement—OPC Grade 53 conforming to IS 12269:201334 
was used in this work. The physical properties of the cement 
used in the construction of slabs are presented in Table 1.

The chemical properties following IS 12269:201334 were 
also evaluated and are presented in Table 2.

Aggregates—Basalt with a particle size of less than 20 mm 
that satisfied IS 2386-196325 was used. These were cleaned 
and dried in the open air for 24 hours after being thoroughly 
washed with tap water. Silt, dust, and unsound particles were 
removed from the concrete. The properties of the aggregates 
used are presented in Table 3.12

In this study, river sand that met the requirements of IS 
383:201635 was employed for the particle-size distribution.

Water—All the concrete mixtures were mixed and cured 
with municipally supplied portable tap water that was free 
of organic contaminants, as proven by IS 456:200036 and IS 
10500:2012.37 Table 4 shows the qualities of the tap water.

TiO2 nanoparticles—A company in India supplied the NT 
powder directly. The properties of the TiO2 nanoparticles are 
provided in Table 5.

Mixture proportions and preparation of specimens
According to IS 10262:2019,38 the nomenclature and 

proportions of the concrete mixtures are presented in Table 6. 

Table 1—Physical properties of OPC (Grade 53)

Fineness, %
Le Chatelier soundness, 

in. (mm)
Specific 
gravity

Consistency, 
seconds (minutes)

Setting time, seconds 
(minutes) Compressive strength, psi (MPa)

Initial setting 
time

Final setting 
time 3 days 7 days 28 days

2.0 0.29 (7.5) 3.14 1800 (30) 6000 (100) 14,400 (240) 4206.09 (29) 5511.43 (38) 8412.18 (58)

Table 2—Chemical properties of OPC (Grade 53),  %

Loss on 
ignition CaO SiO2 Al2O3 Fe2O3 MgO K2O Na2O

2.75 66.52 18.33 4.37 4.70 0.73 0.75 0.12
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The concrete was mixed using a pan mixer with a capacity of 
26.41 gal. (100 L). The surface of all of the particles used in 
the concrete mixture was saturated and dry. All of the combi-
nations were created by substituting cement in the following 
weight percentages: 0, 0.5, 1, 1.5, 2.0, 2.5, and 3.0%.

The dispersing agent sodium tripolyphosphate (STPP) for 
dispersing the nanoparticles, which works as a high-range 
water-reducing admixture (HRWRA) as well, was mixed 
with half the amount of water. The workability, strength, and 
durability of numerous concrete combinations were tested 
using cube, beam, and cylinder specimens. For curing, the 
test specimens were immersed in water at 80.6 ± 3.6°F (27 ± 
2°C) until they achieved the testing age. Table 7 summa-
rizes all of the experiments, including the specimen age, 

specimen size, testing apparatus, and the standard code used 
throughout testing.

Testing methods
Compressive strength—Cubes sized 5.91 in. (150 mm) 

were made and evaluated at 7, 28, and 56 days after curing 
for the five different replacements under IS 516-1959.26 A 
steady force of 458.87 kp/s (4.5 kN/s) was applied during 
compression testing until the cube disintegrated and no 
higher load could be sustained. After 28 days, SEM and 
energy-dispersive spectroscopy  (EDS) investigations were 
conducted on the broken samples from each replacement.

Splitting tensile test—Splitting tensile tests were 
conducted following IS 5816:1999,40 which required the 
preparation of 5.91 in. (150  mm) diameter and 11.81 in. 

Table 3—Properties of coarse aggregate and fine aggregate conforming to IS 2386-1963 (Revision 2016)25

Coarse aggregate Fine aggregate

S.No. Property Values S.No. Property Values

1 Aggregate crushing value, % 19.62 1 Bulk density, kg/m3 1582

2 Aggregate impact value, % 10.88 2 Fineness modulus 2.58

3 Los Angeles abrasion value, % 12.58 3 Water absorption, % 0.57

4 Bulk density, kg/m3 1643 4 Specific gravity 2.63

5 Fineness modulus 6.35

6 Water absorption, % 0.49

7 Flakiness index, % 6.8

8 Elongation index, % 11.8

9 Specific gravity 2.68

Table 4—Tap water characteristics

S.No. Parameter Value

1 Chloride 0.0014 lb/gal. (168 mg/L)

2 pH 7.6

3 Fluoride 0.000003 lb/gal. (0.4 mg/L)

4 Dissolved oxygen 0.00008 lb/gal. (10.15 mg/L)

5 Chemical oxygen demand 0

6 Biological oxygen demand 0

7 Free residual chlorine 8.34 × 10–7 lb/gal. (0.1 mg/L)

Table 5—Properties of TiO2 nanoparticles

S.No Properties Observed values

1 Type TiO2 (rutile)

2 Diameter, in. (nm) 3.93 × 10–7 to 7.87 × 10–7 
(10 to 20)

3 Surface volume ratio, m2/g 163

4 Density, lb/in.3 (g/cm3) 0.135 (3.74)

5 Purity, % >99.9%

Table 6—Nomenclature and mixture proportions of NT-added concrete

Mixture proportions, lb/yd3 (kg/m3)

Concrete mixture 
nomenclature Cement replacement, % Cement Fine aggregate Coarse aggregate NT Water

NT0 0 648.93 (385) 1172.42 (695.57) 1913.82 (1135.43) 0 323.62 (192)

NT0.5 0.5 645.68 (383.07) 1172.42 (695.57) 1913.82 (1135.43) 3.23 (1.92) 323.62 (192)

NT1 1 642.44 (381.15) 1172.42 (695.57) 1913.82 (1135.43) 6.48 (3.85) 323.62 (192)

NT1.5 1.5 639.21 (379.23) 1172.42 (695.57) 1913.82 (1135.43) 9.72 (5.77) 323.62 (192)

NT2 2 635.95 (377.30) 1172.42 (695.57) 1913.82 (1135.43) 12.97 (7.70) 323.62 (192)

NT2.5 2.5 632.70 (375.37) 1172.42 (695.57) 1913.82 (1135.43) 16.21 (9.62) 323.62 (192)

NT3 3 629.47 (373.45) 1172.42 (695.57) 1913.82 (1135.43) 19.46 (11.55) 323.62 (192)



28 ACI Materials Journal/March 2023

(300  mm) height cylinders and their testing at 7, 28, 
and 56 days. The specimens were tested using universal 
testing equipment capable of withstanding a force of 
203,943.2426  kip (2000 kN). Without using a shock, a 
steady load was introduced and gradually increased over 
time at a rate of 1.2 to 2.4 N/(mm2/min).

Flexural strength—According to Nazari,7 the specimens 
containing NT were tested for 28 days under four-point 
loads using flexural testing equipment. The experiment was 
conducted using a constant loading system with a shear span 
of 11.81 in. (300 mm) and a depth ratio of 3.0 for the shear 
span. Following production, the examples were positioned 
on the supporting bearing blocks with one side in propor-
tion to the other. At a quarter distance from the ends of the 
supports, the upper surface of the test specimen was brought 
into contact with the load-applying block.41 The load-bearing 
block is brought into complete contact with the beam surface 
as a result of this technique. The beam was tested for uniform 
contact between the bearing and load-bearing blocks. The 
specimen was loaded repeatedly until it failed and the dial 
ceased to spin.41 The maximum applied load was indicated 
and recorded by the testing equipment. The following equa-
tion is used to determine the flexural strength

	 R FL
bd

=
3

4 2

where R is the flexural strength in N/mm2; F is the applied 
load at failure; L is the beam span measured in mm; b is 
the beam breadth measured in mm; and d is the beam depth 
measured in mm.

Sorptivity—Three 30 mm slices were cut from three 
concrete cubes measuring 3.93 x 3.93 x 2.75 in. (100 x 
100 x 70 mm) to conduct the sorptivity test.12 These cubes 
have a life span of 90 days. The specimens were dried in 
an oven at a temperature of 131°F (55°C) for 3 days before 
being chilled in desiccators. Water absorption from the sides 
was blocked by coating the sidewalls with epoxy resin, 
allowing absorption only from the bottom. The specimens 
were immersed in tap water in pans with a water level of 
0.19 in. (5 mm) above the pan’s bottom. The experimental 

setup is depicted schematically in Fig. 1. After draining extra 
water with an absorbent cloth, the mass of these specimens 
was accurately determined at regular intervals. The slope of 
a line fitted to the plot of the cumulative absorbed volume 
of water per unit area of inflow surface versus the square 
root of time was obtained using data on the absorbed volume 
of water.42 The sorptivity coefficient is calculated using the 
following formula

	 fsc = i/√t

where fsc is the sorptivity coefficient in mm/√min; i is the 
cumulative absorbed volume of water per unit area of inflow 
surface in mm; and t is the elapsed time in minutes. For 
each test, the readings up to 960 seconds (16 minutes) were 
ignored to find the slope of the best-fit curve.

Characterization using SEM and EDS
The microstructure and morphology of NT concrete were 

investigated using EDS and SEM.3,12 After 28 days, the 
sample strength was determined and minute fragments of the 
core were removed. Before SEM analysis, the samples were 
placed in a desiccator and dried at 1472°F (800°C) overnight 
to remove moisture. Broken fragments from tested concrete 
specimens were mounted on brass stabs with carbon ribbons, 
gold-coated, and viewed under a scanning electron micro-
scope for their microstructure.27 The samples were analyzed 

Table 7—Details of experiments carried out

Test Age of concrete, days Specimen size, in. (mm) Apparatus/instrument Reference

Slump Fresh concrete — Standard slump cone IS 1199-195939

Compressive strength 7, 28, 56, and 90 5.9 x 5.9 x 5.9 (150 x 150 x 
150) (cube)

Compression testing machine/universal 
testing machine IS 516-195926

Splitting tensile strength 7, 28, 56, and 90
3.93 diameter and 

7.87 height  (100 diameter 
and 200 height) (cylinder)

Compression testing machine/universal 
testing machine IS 5816:199940

Flexural strength 7, 28, 56, and 90 3.93 x 3.93 x 19.68  (100 x 
100 x 500) (beam) Flexure testing machine IS 516-195926

Sorptivity 90 5.9 x 5.9 x 5.9 (150 x 150 x 
150) (cube) Weighing machine —

Water absorption 28
5.9 diameter x 11.81 

height (150 diameter x 
300 height) (cylinder)

Extensometers IS 516-195926

Scanning electron microscopy 28 Samples of SEM  Scanning electron microscope —

Fig. 1—Experimental setup for sorptivity measurements.
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using a 78.74 in. (2 μm) diameter probe, a 15 kV acceler-
ating voltage, and a 50 mA probe current. The SEM results 
are projected to be accurate to within a margin of error of 
±2%. Figure 2 shows the microstructure of the NT concrete.

RESULTS AND DISCUSSION
In this experimental program, the durability properties of 

the mixtures were measured by slump flow D (mm). Figure 3 
presents the results of the tests performed on fresh concrete.

Slump flow
The fresh properties of all replacements are depicted in 

Fig. 3 (with and without NT). All of the concrete mixtures 
included the same quantity of water.27 When NT was added 
to the concrete, it resulted in a new material that was hard but 
cohesive and sticky. As a result, the specimen workability 
decreased in direct proportion to the amount of cement 
replaced with NT. NT2, roughly 1.42 in. (36 mm), had the 
lowest slump value. NT has a limited lubricating effect and 
thus low workability due to its fast water absorption rate and 
low water content.43 As a result of the mixing technique, the 
porous NT particles absorbed more water internally than the 
natural fine aggregate in the mixture. The rough texture and 

uneven shape of the material enhance interlocking and hard-
ness, hence minimizing the ball-bearing effect.44 As a result 
of all of these factors, concrete containing NT has a lower 
slump and a higher water requirement. When the slump test 
results were compared to those from earlier research,45,46 it 
was determined that there was a high degree of agreement 
that increasing NT decreased slump value.3,5,10

Although the addition of TiO2 nanoparticles in various 
volume fractions reduced flowability characteristics, the 
nanoparticles increased the consistency of the concrete 
mixtures.47 In the mixtures containing TiO2 nanoparticles, 
there was less bleeding and segregation.

Mechanical properties
Figures 4 to 6 show the compressive, splitting tensile, 

and flexural strength of each combination as an average of 
three specimens at 7, 28, 56, and 90 days. At 7 days of age, 
NT0’s compressive strength was tested to be 3237.24 psi 
(22.32 MPa). When NT0.5, NT1, and NT1.5 were compared 
to the control mixture (that is, NT0), the compressive 
strength increased nominally by 2.15%, 5.15%, and 18.67%, 
respectively. The percentage increase in strength of NT2 and 
NT2.5 was determined to be 6.67% and 3.34%, respectively. 
The maximum gain in compressive strength was found at a 
replacement level of 1.5%.

As shown in Fig. 5, splitting tensile strength was tested 
with NT substitution in various percentages. The split-
ting tensile strength of the NT1, NT1.5, and NT2 concrete 
mixtures increased on all days when compared to the control 
mixture. On the 28th day, the splitting tensile strength 
improved significantly when compared to the seventh day. 
When 1.5% of the cement in concrete was substituted with 
NT, the splitting tensile strength rose.

The effect of nominal pozzolanic activity of NT and the 
filler effect could be some of the probable explanations for 
the improvement in strength up to 1.5% of NT. The type 
of cement paste produced and the interfacial transition zone 
(ITZ), both of which affect tensile strength, are also influenced 
by NT properties. At 7 days, the splitting tensile strength of 
NT0 was 2.2 MPa, whereas the splitting tensile strength 
of the other mixtures NT0.5, NT1.0, NT1.5, NT2, NT2.5, 
and NT3 were 333.58 psi (2.3 MPa), 362.59 (2.5  MPa), 

Fig. 2—Microstructure of NT.

Fig. 3—Slump values of concrete with varying NT percentage.
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406.10  psi (2.8 MPa), 390.15 psi (2.69  MPa), 384.35 psi 
(2.65 MPa), and 359.69 psi (2.48 MPa), respectively.

The beam flexural strength after 7, 28, 56, and 90 days is 
shown in Fig. 6. The strength parameters are comparable to 
those of splitting tensile strength, with low strength at 7 days 
and a significant increase at 28 days.

At 56 and 90 days, a minor increase in strength is also 
observed while the hydration process continues. At 1.5% 
replacement, flexural strength, like compressive and split-
ting tensile strength, reaches a maximum value.

Sorptivity
All samples were tested for capillary suction after curing 

for 28 days using a sorptivity test. Sorptivity is the slope 
of the straight line that displays the relationship between 
absorption and the square root of time.7,29 In Table 8, the 
absorption as a function of time and the square root of the 
absorption coefficient are presented for the NT concrete 
mixtures.21 The concrete mixtures with NT3.0 have the 
lowest sorptivity, followed by NT2.5, NT2, NT1.5, NT1, 

NT0.5, and NT0. Pore characteristics can be related to 
differences in sorptivity levels.

The smaller particle size of NT results in the low sorptivity, 
and increasing the production of calcium-silicate-hydrate 
(C-S-H) gel shrinks the pores, hence decreasing the sorp-
tivity.4 Due to the presence of NT in the C-S-H gel, samples 
containing a higher concentration of NT demonstrated lower 
sorptivity.48,49 As a result, the pores become less connected, 
resulting in decreased absorption.38 These findings are 
consistent with those reported in previous research on water 
absorption (Table 8).

Water absorption
Water absorption was determined using soaking tests, 

and the findings are reported in Table 8. Water absorption 
increased throughout 24 hours. Water absorption reduced 
as the fraction of NT increased, owing to the increase in 
smaller particles.25 This is in addition to the results obtained 
for sorptivity and apparent porosity. Sorptivity and apparent 
porosity diminish when the NT content increases.

Apparent porosity
Three cubes from each series were oven-dried for 24 hours 

at 185°F (85°C) to determine the water absorption capacity 
of mortar specimens, and their weight served as the starting 

Fig. 4—Compressive strength of concrete containing NT.

Fig. 5—Splitting tensile strength concrete containing NT.

Fig. 6—Flexural strength of concrete containing NT.

Table 8—Sorptivity and water absorption of 
concrete containing NT

NT, %
Sorptivity, 
mm/sec0.5 Water absorption, % Apparent porosity, %

NT 0.0477 4.96 25.45

NT0.5 0.0409 4.89 23.62

NT1.0 0.0359 4.74 21.65

NT1.5 0.0369 4.64 19.27

NT2.0 0.0327 4.59 16.31

NT2.5 0.0231 4.45 14.08

NT3.0 0.0102 4.36 10.63
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weight. After 24 hours of immersion in water, the saturated 
surface-dry weight of the samples was determined to be 
the final weight. The weight loss of specimens that have 
absorbed water is expressed as a percentage.46 The speci-
mens were dried at 185°F (85°C) because higher tempera-
tures could disturb the microstructure of mortar specimens, 
resulting in erroneous water absorption measurements.50,51 
The third set of three samples was used to determine the 
apparent porosity.

The following equation was used to find the apparent 
porosity

	 Apparent porosity = [(Mw – Md)/(Mw – NT)] × 100%

where Mw is the weight of the specimen after immersion in 
water for 48 hours; Md is the weight of the specimen after 
oven drying at 185°F (85°C) for 24 hours; and NT is the 
weight of the specimen suspended in water.

UPV and dynamic modulus of elasticity
The UPV test is a nondestructive technique for measuring 

the dynamic modulus of elasticity of concrete specimens as 
well as their quality and homogeneity.52 Additionally, this 
test can be used to discover concrete fractures, defects, and 
pores. In the current investigation, concrete cube samples 
cast for compressive strength were subjected to a UPV test 
before being evaluated for compression on the 28th day. 
After coating the test surface with petroleum jelly to ensure 
good acoustic coupling, the pulse velocity was applied 
through the direct transmission method.53 The variability of 
the results for each specimen was reduced by dividing the 
cube surface into three 3 x 3 grids, as the test is dependent 
on a variety of variables, including aggregate density and 
modulus; physical and mechanical properties of cement; the 
presence of voids; moisture; temperature; and the mixture, 
shape, and size of concrete.15 UPV measurements were 
obtained and averaged at each junction location. The wave 
velocity was calculated using Erdogan’s proposed equation31

	 V = (h/t) × 106

where V is the ultrasonic wave speed (m/s); h is the distance 
between the surface of the concrete specimen from which 
the ultrasonic wave is sent and the surface where the wave 
is received (m); and t is the time passed from the concrete 
surface from which the ultrasonic wave is sent and the 
surface wave is received (μs).

The UPV of concrete containing varying concentrations of 
NT after 28 days is illustrated in Table 9. In general, when 
the NT content increases, the UPV values fall. However, 
all concrete containing NT falls within the category of 
good concrete, as defined by IS 13311-2:1992,53 with UPV 
values of more than 5000 m/s. Additionally, all concrete 
can be regarded as being of high-quality NT of uniformity 
and integrity.54 As a result, it can be inferred that the addi-
tion of NT to concrete improves its UPV testing quality. 
The decrease in voids and microcracks observed as the 
NT concentration increased could be attributed to NT filler 
action, which lowers voids and microcracks.43

Işıkdaǧ and Topçu55 provided formulas for calculating 
the dynamic modulus of elasticity (Ed). The formula is as 
follows

	 Ed = V2γ(1 + μ)(1 – 2μ) × 10–6/(1 – μ)

where μ is the dynamic Poisson’s ratio for concrete and is 
taken as 0.23; and γ is the unit weight (kg/m3).

Figure 7 shows the dynamic modulus of elasticity in GPa 
versus the percentage of NT.

Chloride penetration
Cubic specimens 150 x 150 x 150 mm were immersed in 

a 3% NaCl solution for 90 days after a 90-day curing period. 
Then specimens were oven-dried for 24 hours. After that, to 
prepare some pulverized concrete samples (powder samples) 
for the test, all six faces of the cubic specimens were drilled 
to depths of 0 to 0.19 in. (0 to 5 mm), 0.19 to 0.39 in. (5 to 
10 mm), 0.39 to 0.59 in. (10 to 15 mm), 0.59 to 0.78 in. (15 
to 20 mm), and 0.78 to 1.81 in. (20 to 30 mm). The concrete 
powder samples obtained from all six faces for each depth 
were blended, and the samples were ready for the next step 
of the test (ASTM C1218/C1218M-15).56

The total chloride content of pulverized concrete is deter-
mined using a potentiometric titration of chloride with silver 
nitrate (ASTM C114)57 in this test procedure. The produced 
crushed concrete sample is dissolved in nitric acid, and if the 
solution is acidic, a small amount of NaHCO3 is added until 
the pH value reaches 6 or 7. The K2CrO4 indicator is then 
added, resulting in a light yellow color change in the solu-
tion. Eventually, 0.05 N AgNO3 is added until the solution 
turns orange-yellow (weak brown) in color, and the volume 
of the AgNO3 solution is measured. To determine the Cl ion 
percentage, the volume of the AgNO3 solution is substituted 
in the following equation

	 Cl− %
.( ) =

⋅( )3 5453 V N
W

where W is the weight of pulverized (powder) concrete 
prepared from the sample; N is the normality of AgNO3 solu-
tion; and V is the volume of AgNO3 solution.

In this study, the chloride penetration was calculated as a 
fraction of the weight of the concrete sample.58 The chloride 
percentages at various depths of the concrete samples are 
shown in Fig. 8.

Table 9—UPV at 28 days

S. No. Mixture UPV, m/s

1 NT0 6173.44

2 NT0.5 6126.42

3 NT1.0 6052.05

4 NT1.5 5918.63

5 NT2.0 5812.55

6 NT2.5 5699.91

7 NT3.0 5602.58
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The results show a general decrease in chloride percentage 
by the depth of the concrete sample, indicating that the 
concrete components, particularly aggregates, are free of 
chloride ions.

According to the results obtained, increasing the TiO2 
nanoparticles to a concentration of 3 wt. % results in a 
decrease in chloride penetration. The findings of this study 
corroborate those of other researchers.58,59 For instance, 
Detwiler et al.1 investigated the efficacy of using supple-
mentary cementitious materials to improve the chloride 
resistance of accelerated cured concrete and discovered that 
concretes containing supplementary cementitious mate-
rials outperformed portland cement concrete. Additionally, 
the use of supplementary cementitious materials can help 
prevent detrimental expansions caused by both delayed 
ettringite formation and the alkali-silica reaction.60

Regarding the beneficial effect of TiO2 nanoparticles as 
supplementary cementitious materials on chloride penetra-
tion through concrete, this could be because the nanopar-
ticles located in the cement paste as the kernel can further 
promote cement hydration due to their high activity, 
resulting in a more homogeneous and compact cement 
paste.58 As a result, the pore structure of concrete is signifi-
cantly improved. When the nanoparticle content is increased 
above 3% by weight, the improvement in the pore struc-
ture of concrete is weakened.60 This is because the distance 

between nanoparticles decreases as the nanoparticle content 
increases, and the Ca(OH)2 crystal quantity decreases as a 
result.61 This results in a low ratio of crystal to strengthening 
gel, increased shrinkage and creep of the cement matrix, and 
a looser pore structure of the cement matrix, which could 
result in increased chloride penetration.51

Figure 8 shows the percentage of chloride penetration at 
different average depths of the concrete samples.

MICROSTRUCTURE
The SEM images at 50 μm magnification for all the 

samples are presented in Fig. 9. While the matrix of the 
control mixture and 1% NT showed relatively larger 
(approximately 10 μm) pores unevenly distributed, the 2% 
NT showed smaller-sized pores (approximately 2 to 3 μm) 
more uniformly distributed, and 3% NT showed relatively 
lesser pores. The 2% NT and 3% NT also exhibited the 
formation of more C-S-H gel. Thus, it is inferred that the 
higher the percentage of NT, the lesser the pores.

SEM aids in the characterization of concrete’s microstruc-
ture and the identification of the components that affect its 
mechanical properties and durability.62 The concrete micro-
structure is made up of C-S-H gel, calcium hydroxide, 
calcium sulfoaluminate hydrate (ettringite and monosul-
fate), coarse and fine aggregate, and an ITZ between the 
aggregate and cement hydration products. In EDS spot  
analysis results, calcium, silica, and alumina content in NT 
were discovered in percentages of 35.24, 29.3, and 12.87, 
respectively. Figures 9(a) and (b) show the microstructure of 
NT0 and NT1.0 concrete.

The microstructure of the specimens changed after 
28  days of curing in all of the replacements. The main 
hydration product, C-S-H gel, which was responsible for 
improved mechanical properties, is present in significant 
quantity. Hence, a sharp rise in the value of strength param-
eters was observed at 28 days. A pozzolanic reaction and 
the production of a C-S-H gel were observed after 28 days 
of curing. Figure  9 shows the microstructure of NAC, 
NT1.0, NT2, and NT3 at 50 μm magnification. Figure 9(a) 
shows the microstructure of the control mixture. Microp-
ores up to 5 μm are seen scattered along with the matrix. 
NT1.0 (Fig. 9(b)) and NT2 (Fig. 9(c)) show a progressively 
improving microstructure with smaller voids and less in 
number. The ITZ is intact, as seen in NT2 (Fig. 9(c)). In 
the case of NT3 (Fig. 9(d)), EDS spot analysis revealed a 

Fig. 7—Dynamic modulus of elasticity (GPa) versus percentage of NT.

Fig. 8—Chloride penetration depth versus percentage of NT.
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dense microstructure and minimal voids. This is consistent 
with the findings of compressive strength and further estab-
lishes the two-wall effect. The aggregates of NT3 are well 
covered with the matrix and exhibit an excellent bond with 
the matrix. Microcracks and micropores are nearly absent in 
this sample.1 The presence of NT thus reduces the voids in 
the concrete.

CONCLUSIONS
Experimental investigations to study the effect of 

partial replacement of cement with nano-titanium dioxide 
(nano-TiO2 [NT]) are attempted in this research work. The 
physical and chemical properties of NT and its viability to 
be used as a replacement for cement are studied. The results 
obtained in this study can be summarized as follows:
•	 Increases in the fraction of nanoparticles often enhanced 

the durability of the resulting concrete, which might be 
attributed to finer particles in the cement mixture and 
the nanoparticles’ filler effect.

•	 TiO2 nanoparticles as a partial replacement for cement 
up to 1.5% could accelerate the formation of calcium- 
silicate-hydrate (C-S-H) gels due to increased crystal-
line Ca(OH)2 concentration at an early stage of hydra-
tion, thereby increasing the flexural and splitting tensile 
strengths of concrete specimens even at early stages 
of hydration. The presence of more than 1.5% of TiO2 
nanoparticles results in decreased flexural and splitting 
tensile strengths because of the decreased crystalline 
Ca(OH)2 content necessary for C-S-H gel formation.

•	 Both water absorption and apparent porosity were 
significantly reduced with the addition of TiO2 nanopar-
ticles, as the nanoparticles act as nanofillers and improve 
the concrete resistance to water permeability.

•	 Ultrasnoic pulse velocity (UPV) tests revealed that 
when TiO2 nanoparticles are added, the number of pores 
in the concrete decreases, indicating that the density of 
the concrete is raised and the pore structure is improved.

•	 Chloride penetration decreased with the inclusion of 
nanoparticles, which could be due to the more packed 
microstructure created by the nanoparticles and the 
increased volume of the paste.
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In this paper, the resistance of mechanically prepared one-part 
alkali-activated materials to external sulfuric acid attack was 
investigated by simulating realistic erosion environments in terms 
of sulfate type, concentration, and erosion mode. The macro-
scopic properties of the specimens were measured at different 
ages. Microscopic analyses were performed by Fourier-transform 
infrared spectroscopy (FTIR), X-ray diffraction (XRD), mercury 
intrusion porosimetry (MIP), and other techniques to obtain the 
effect of different erosion environments on the mechanical-force 
chemically prepared one-part alkali-activated materials against 
sulfate erosion. The study shows that the mechanical properties of 
the specimens showed a trend of increasing and then decreasing 
with the extension of erosion time. Compared with Na2SO4 erosion, 
the erosion damage was greatest when the sulfate containing Mg2+ 
was eroded in a wetting-and-drying cycle; the erosion products of 
Na2SO4 solution coexist in the form of calcite and gypsum, while 
the erosion products of MgSO4 solution mainly consist of gypsum.

Keywords: mechanochemistry; one-part alkali-activated materials; sulfate 
attack.

INTRODUCTION
One-part alkali-excited cementitious material refers to an 

inorganic nonmetallic material with cementitious activity 
that is prepared by mixing a solid alkaline exciter with a 
mineral material with volcanic ash activity according to a 
certain process.1,2 This one-part alkali-initiated gelling mate-
rial is similar to ordinary portland cement (OPC) and can be 
used by adding water. Alkali-excited gelling materials have 
attracted great attention from academic authors worldwide 
for their excellent performance. In the 1940s, Purdon3 exper-
imentally prepared a geopolymer mixture by simply mixing 
slag with solid sodium hydroxide and successfully prepared a 
gelling mixture. At the beginning of the twenty-first century, 
Duxson and Provis4 outlined various potential methods 
for tuning the precursor chemistry and particle behavior 
of geopolymers and proposed a one-part geopolymer that 
exceeded the potential of conventional two-part (solid plus 
alkaline-activator solution) hybrid designs. Peng et al.5 
prepared a one-part geopolymer with excellent compressive 
strength by a process of calcined bentonite and the addition 
of solid alkali, which exceeded the compressive strength of 
a two-part geopolymer with the same ratio and achieved a 
higher softening factor of 0.93. Additionally, in terms of 
environmental protection and economy, the raw material 
sources of alkali-inspired cementitious materials are mostly 
fly ash, slag, and other industrial waste. These substances 
have a low cost, simple preparation process, less energy 
consumption, and only 26 to 45% of the carbon emissions 

of OPC and are therefore recognized as green cementitious 
materials.6-8

In recent years, researchers have found that the treatment 
of alkali-excited precursors using mechanical-force chem-
istry enables the effective release of volcanic ash activity 
from the precursors, leading to the improvement of various 
properties, such as the efficiency of curing toxic heavy metal 
ions and thermal stabilities.9 The study by Temuujin et al.10 
showed that mechanical-force chemistry changed the phys-
ical properties of fly ash and directly affected the volcanic 
ash reaction of alkali-excited materials. Also, the 28-day 
compressive strength of alkali-excited fly ash net slurry spec-
imens subjected to mechanical-force chemistry increased by 
80%. Kumar et al.11 proposed that mechanical activation 
can enhance the reactivity of alkali-excited slag cement net 
slurry, enabling it to react with water directly and harden, 
and suggested that the volcanic ash reactivity of slag cement 
is related to its specific surface area. Zhao et al.12 found 
that mechanical activation resulted in optimized particle- 
size distribution, superior pore structure of alkali-excited 
fly ash mortar, and reduced aggregation of SiO4 tetrahedra 
and AlO4 tetrahedra in the gel. These studies show that the 
preparation of single-part alkali-excited gelling materials 
using mechanical-force chemistry has been recognized by 
a wide range of researchers and has become a research hot 
spot in the field of new green building materials.

The issue of durability of concrete has been a deci-
sive factor in the service life of buildings, and the erosion 
damage of concrete by sulfate is one of the reasons for the 
serious reduction of durability.13,14 Previous studies15-17 
have shown that sulfate erosion will cause the expansion of 
the cementitious material and produce cracks and peeling, 
which has a great negative impact on its strength and dura-
bility. Global maintenance and repair costs due to corrosion 
alone exceed $150 billion annually.18,19 The environments 
in which buildings are located have contributed to diver-
sity in sulfate erosion.20-22 For example, inland saline areas 
contain high concentrations of mirabilite (Na2SO4·10H2O), 
and sulfate erosion is dominated by salt (Na+). In contrast, 
the sulfate (MgSO4) in seawater mainly causes building 
erosion in coastal areas. In addition, some buildings are 
partially submerged in seawater for a long period, as well 
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as wetting-and-drying circulation areas in splash zones and 
tidal zones. Therefore, it is necessary to test the sulfate resis-
tance of single-component alkali-initiated gelling materials 
before they are widely used in practical engineering.

To more closely simulate the authentic environments 
in which the building is located, Mg2+ and Na+, which are 
more widely distributed, were selected as the metal cations 
of sulfate erosion solution in this paper. Realistic sulfate 
erosion environments were simulated by adjusting sulfate 
solution concentrations (that is, 5 and 10%) and erosion 
methods (that is, wetting-and-drying cycles and full immer-
sion). At the same time, the sulfate resistance performance 
was compared with that of OPC to make a comprehensive 
evaluation of the sulfate resistance of single-part alkali- 
excited materials prepared by mechanical-force chemistry.

RESEARCH SIGNIFICANCE
The preparation process of one-part alkali-activated mate-

rials by mechanical-force ball milling is simple, does not 
require a high-temperature calcination process, consumes 
less energy, and has only one-third of the carbon emissions 
of OPC, which is recognized as a green cementitious mate-
rial. The investigation of the sulfuric acid resistance of the 
single-component alkali-initiated material prepared by a 
mechanical-force ball mill is important preparation for the 
promotion of the material in practical engineering applica-
tions. It is also an effective measure to replace the use of 
portland cement (PC) and reduce carbon emissions, thereby 
exhibiting significant research significance.

MATERIALS AND EXPERIMENTS
Raw materials

Material preparation—For this study, fly ash and slag 
were purchased from the same Chinese mining company. 
They were used as alkali-excited precursors, where the 
average particle size of raw fly ash was approximately 
63.72 μm, the water requirement was 80%, the 45 μm sieve 
margin was 15.15%, the average particle size of raw mineral 
powder was approximately 15.7 μm, and the 28-day activity 
index reached 98%. Table 1 and Fig. 1 display the chem-
ical composition and crystal composition, respectively. 
According to Fig. 1, the main crystalline phases in fly ash 
are mullite and quartz, which also contain amorphous glass 
phases. Slag is mainly composed of an amorphous glass 
phase and calcium oxide, and a small amount of calcite.

For the experimental control group, P.O42.5R OPC 
produced by a cement factory in China was purchased, 
with a density of 3150 kg/m3 and a specific surface area of  
352  m2/kg. The cement met the requirements of EN 
197-1:2011. Table 2 presents the chemical composition of 
the cement.

Furthermore, in this study, analytical pure barium chloride 
was used as a retarder and International Organization for 
Standardization (ISO) standard sand as mixed sand.

Preparation of alkali-activated materials and sulfate solu-
tion—The preparation method of one-part alkali-activated 
material prepared by mechanochemistry is as follows: first, 
heat the slag powder and fly ash in an oven at 100 ± 5°C for 
2 hours to remove the moisture. Remove the slag powder and 
fly ash and cool to room temperature. Place the slag powder, 
fly ash, and solid activator together into a ball mill tank. 
Use the ball mill to mill the mixture for 30 minutes. Finally, 
store the milled powder in a sealed bag to inhibit moisture 
and carbonization. The size of the steel balls in the ball mill 
was 30, 20, and 10 mm in diameter, the mass ratio was 1:1:1, 
and the packing density of the steel balls was 4640 kg/m3. In 
this experiment, anhydrous NaOH and Na2SiO3 were used as 
alkali activators, where the purity of NaOH was over 96% and 
the purity of Na2SiO3 with SiO2:Na2O of 1.4 was over 99%.

Table 1—Chemical composition of materials, wt. %

Mineral composition SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 Loss

Fly ash 45.9 34 5 0.8 6.9 0.2 0.9 0.1 1.7 4.5

Slag 28.7 14 0.4 9.9 41.2 0.5 0.4 0.3 1.4 3.2

Fig. 1—(a) XRD spectra of original fly ash; and (b) XRD 
spectra of original slag.
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The sulfates used in this experiment were analytically pure 
anhydrous Na2SO4 and anhydrous MgSO4, and the purity of 
both sulfates exceeded 99%. The configuration steps are as 
follows: First, weigh an appropriate amount of solid sulfate 
and deionized water, as required. Then, prepare the sulfate 
attack solution, according to the configuration standard of 
the sulfate solution.

Experimental scheme and specimen preparation
Experimental scheme—Table 3 presents the mixture 

proportions selected in this study (the percentages in the 
table are quality percentages).

To facilitate accuracy, the test scheme adopted the single 
control variable method to create erosion tests of various 
influencing factors, as Table 4 illustrates. At the same time, 
two control groups were established, which were simple 
mixing mortar (simple mixing of precursor and alkali acti-
vator without mechanical grinding) and OPC mortar speci-
mens. Then, the authors compared the resistance to sulfate 
attack of the various one-part alkali-activated slag-fly ash 
mortar specimens prepared by mechanochemistry.

After 28 days of standard curing, the specimens were 
placed in various pieces of equipment according to the 
different erosion methods. The full-immersion specimens 
were placed in a constant temperature and humidity curing 
box, as Fig.  2(a) illustrates. For the wetting-and-drying 
cycles, the samples were placed in a self-made automatic 
wetting-and-drying cycle device, shown in Fig. 2(b). The 
automatic wetting-and-drying cycle device was maintained 
at a constant temperature (20°C) and humidity (40%). 
The wetting-and-drying cycle mode is 16 hours of full 
immersion and 8 hours of drying, followed by a complete 

wetting-and-drying cycle for 24 hours. The sulfate erosion 
solutions were changed monthly during the experiment to 
reduce errors caused by changes in concentration. When the 
age of erosion reached 30, 60, and 90 days, the specimens 
were analyzed for appearance, compressive and flexural 
strengths, and microscopic variations. Ultimately, the mech-
anism of the effects of different erosion environments on the 
one-part alkali-activated materials prepared by mechano-
chemistry against sulfate erosion was obtained.

Specimen preparation—When the mortar specimen 
reaches the age of erosion (that is, 30, 60, and 90 days of 
erosion), the mortar sample from 0 to 5 mm from the surface 
of the specimen was removed by a cutting machine. The 
removed samples were crushed into pieces and placed in 
reagent bottles containing anhydrous ethanol to terminate 
the volcanic ash reaction. The instruments used for each 
microscopic test are as follows:

1. Fourier-transform infrared spectroscopy (FTIR): 
The instrument used in this study is a Fourier-transform 
infrared spectrometer produced in the United States. The 
wave number range of the instrument was set from 4000 to 
400 cm–1 with a resolution of 12.5 px–1 and a wave number 
accuracy of 0.25  px–1. The KBr compression method was 
used as follows: first, the oven was set to 120°C for drying 
the potassium bromide powder. Then, 1 mg of sample 
powder and 100 mg of potassium bromide powder were 
weighed with an accuracy of 0.1 mg. Subsequently, the 
mixed powder was ground in an agate mortar and a tablet 
pressing mechanism was used to make a disc without cracks 
and with a certain degree of translucency. Finally, the discs 
were put into the machine to start the test.

Table 2—Chemical compositions of cement, wt. %

Mineral 
composition SiO2 Al2O3 CaO Fe2O3 SO3 MgO f-CaO Other Ignition loss

Value 21.7 4.4 62.5 3.3 2.9 2.1 0.6 0.9 1.6

Table 3—Specimen mixture proportions

Material Fly ash, % Slag, % Portland cement, % w/c Sand-glue ratio Alkali-excitation agent, % Retarder, %

Alkali-activated materials 75 25 — 0.4 0.5 4 1

OPC — — 100 0.4 0.5 — —

Table 4—Test design scheme

Numbering Sulfate species Sulfate concentration, % Erosion mode

M5F MgSO4 5 Full immersion

M10F MgSO4 10 Full immersion

N5F Na2SO4 5 Full immersion

N10F Na2SO4 10 Full immersion

M5DW MgSO4 5 Wetting-and-drying cycles

N5DW Na2SO4 5 Wetting-and-drying cycles

S-M5F MgSO4 5 Full immersion

O-M5F MgSO4 5 Full immersion

Note: M is MgSO4; N is Na2SO4; F is full immersion; DW is wetting-and-drying cycles; S is simple mixing; O is OPC; numbers denote sulfate solution concentration. (For 
example, O-M5F denotes full-immersion erosion of specimen prepared with OPC under 5% MgSO4.)
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2. X-ray diffraction analysis (XRD): The instrument used 
in this study is an X-ray polycrystalline diffractometer. The 
2θ angle range of the test instrument is –110 to 162 degrees, 
and the resolution full width at half maximum (FWHM) 
is 0.028  degrees. Before grinding, anhydrous ethanol was 
poured into the mortar to prevent carbonization of the 
mortar sample during the grinding process. After grinding, 
the paste-like samples were loaded into an aluminum box. 
The aluminum box was placed in a vacuum drying oven and 
baked at 50°C for 24 hours. The coarse particles in the dried 
powder were removed with a sieve disc of 0.08 mm aperture, 
and the sieved powder was put into a sealed bag.

3. Pore structure analysis (that is, mercury intrusion poro-
simetry [MIP]): The instrument used in this study is a mercury- 
pressure instrument. The aperture range of the instrument 
is 0.003 to 1080 μm. A 1.5 g sample was used for the test 
and was put into the expander and then vacuumed until p < 
6.67 Pa. The whole test must go through two stages of low 
pressure (1.03 to 25 psi) and high pressure (5 to 50,000 psi) 
to obtain two sets of data, respectively, after which these two 

sets of data are processed to obtain the analytical data of the 
sample pore structure.

RESULTS AND DISCUSSION
Effect of different erosion conditions on  
specimen strength

Figures 3 and 4 display the changes in compressive and 
flexural strength of the specimens under different erosion 
conditions. It includes changes in strength and strength loss 
rate, which is the loss rate of specimen strength at the next 
phase compared to the strength in the previous phase. It was 
found that the strength of the test specimens exhibits three 
phases with increasing erosion time. In the first stage from 
0 to 30 days—namely, the growth stage—the strength of 
the specimens gradually increases with erosion time. In the 
second stage, which is the transition period at 30 to 60 days, 
specimen strength growth slows and stabilizes. Then, there 
is a transition from strength growth to loss. In the third stage, 
which is the declining stage between 60 to 90 days, the 
strength of the specimens gradually decreases with erosion.

During the initial growth phase in the first 30 days, the 
growth in strength of the specimens is mainly caused by 
two aspects. First, volcanic ash-active substances in the 
slag and fly ash lead to the hydration of alkali-excited mate-
rials. It can be hypothesized that silica-aluminous salts with 
volcanic ash activity and C-S-H undergo volcanic ash reac-
tions to produce the denser Ca(SiO4)2,23 and the accumula-
tion of Ca(SiO4)2 fills the pores in the concrete. The other 
factor is the erosion of sulfate, which means that gypsum 
and ettringite form and accumulate in the micropore struc-
ture when the specimen is eroded by sulfate.24,25 The accu-
mulation of erosion products such as gypsum and ettringite 
causes expansion, which is beneficial to the strength of the 
specimen in the early stage of erosion. Figures 3 and 4 illus-
trate that the compressive strength loss rate of the N5DW 
specimen is the highest in the initial stage, reaching –19.1%. 
In contrast, the compressive strength loss rate of the corre-
sponding MgSO4 wetting-and-drying cycle erosion specimen 
M5DW is only –8.4%. The influence of the wetting-and-
drying cycle erosion modes of two sulfates on the compres-
sive strength of the specimens is greater than full-immersion 
erosion under the same conditions. Compared with sulfate 
concentration, the compressive strength and flexibility 
strength of the N5F specimens increases significantly under 
Na2SO4 erosion at low concentrations, and the loss rates are 
–12.2 and –4.9%, while the N10F specimens present losses 
of –3.0 and –2.2%. Conversely, the compressive and flex-
ural strengths of the M10F specimens changed significantly 
under MgSO4 erosion, with loss rates of –5.5% and –13.5%, 
respectively, while the loss rates of M5F specimens are 
–2.0% and –7.9%, respectively. The compressive strength 
loss rates of the S-M5F and O-M5F specimens in the control 
group are –11.2% and –10.5%, respectively, while the flex-
ural strength loss rates are –10.7 and –10.6%.

In the second stage, the strength transition period at 30 to 
60 days, the secondary hydration of alkali-activated mate-
rials decreases.26,27 The accumulation of sulfate erosion 
products reaches a certain degree, which weakens the 
strength growth of the specimen. Sulfate erosion products 

Fig. 2—(a) Full-immersion erosion in mortar specimen 
curing box; and (b) drying-and-wetting erosion of mortar 
specimens.
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accumulate continuously, adhere to the inner walls of the 
pores, fill the pores, and increase pore wall pressure.28 In 
addition to increasing pore pressure, it also effectively 
hinders the corrosion progress of the sulfate solution. At 
this stage, the compactness of the specimen increases, while 
the pore structure decreases. Figures 3 and 4 reveal that the 
N5DW and M10F specimens present the greatest degree of 
strength variation in the transition phase, which is consistent 
with the first stage. The compressive and flexural strength 
loss rates for N5DW increase from –19.1 and –2.2% to 1.2 
and 6.2%, while the loss rates for M10F increase from –5.5 
and –13.5% to 12.3 and 16.2%. In contrast to the strength 
change of each specimen in the control group, the strength of 
the M5F and S-M5F specimens in the alkali-activated group 
complete the transition from growth to loss. However, the 
strength of the O-M5F specimens still grows steadily, and 
the compressive and flexural strength loss rates change from 
–10.5 and –10.6% to –7.3 and –4.6%. These results display 
some similarities with the findings of Ganjian and Pouya.29

In the final 30 days, the decreasing strength stage, the 
erosion products in the pores of the specimens accumu-
late continuously, and the expansion stress of the pore 
walls increases continuously. At the same time, micro-
cracks appear and develop, leading to a rapid decrease in 
the strength of the specimen. Under certain conditions, the 
activity of the slag and fly ash is slightly lower than cement 
and is characterized by early strength and rapid hardening. It 
is easy for relatively large pores to form between the mortars 
of the specimens, resulting in a weakening of the bonding 
force. Therefore, the compressive strength increases rapidly 
in the early stages, while corrosion damage is more obvious 
in the later stages. By observing the strength change of each 
specimen in Fig. 3 and 4, it can be observed that the strength 
loss of the M10F and M5DW specimens are the largest. The 
loss rates of compressive strength are 24.1 and 19.0%, while 
the loss rates of flexural strength are 6.3 and 2.4%. In the 
control group, the strength of the O-M5F samples did not 
change significantly, with a loss in compressive strength 

Fig. 3—(a) Effect of different sulfate concentrations on compressive strength; (b) effect of different erosion methods on compres-
sive strength; and (c) effect of control group on compressive strength at different erosion times.
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from –7.3 to –4.6% and a loss of flexural strength between 
4.9 and –3.4%. The compressive and flexural strengths of 
M5F and S-M5F continued to decrease, with 12.6 and 12.6% 
losses in compressive strength, and 7.1 and 6.4% losses in 
flexural strength.

In summary, from the perspective of sulfate species, 
concentration, and erosion mode, the erosion of MgSO4 
is significantly greater than Na2SO4. Besides, high- 
concentration sulfate experiences greater erosion than 
low-concentration sulfate, and the erosion mode of the sulfate 
wetting-and-drying cycle is greater than full immersion. 
Concerning the sulfate erosion resistance of the three mate-
rials, after 90 days of erosion, the sulfate-resistance ability of 
the mechanically ground alkali-activated cementitious mate-
rial is stronger than the sample prepared by simple mixing 
but is still less resistant than OPC. In contrast to the experi-
mental findings of this study, Karakoç et al.30 and Alcamand 
et al.31 concluded that although the strength of alkali-excited 
materials decreases with increasing sulfate concentration 

and erosion time in the early stages of erosion, the strength 
decreases to a lesser extent in the later stages of erosion.

Analysis of erosion products and erosion 
mechanism

Fourier-transform infrared spectroscopy—To reduce the 
error of the test results, a fragment 5 mm away from the 
surface of the mortar specimens was chosen as the micro-
scopic test sample. Figure 5 presents the schematic diagram 
of the experiment. Based on the change rule of chemical 
composition and functional groups of erosion products, the 
influence mechanism of sulfate type, sulfate concentration, 
and erosion mode on sulfate erosion of the mortar specimens 
was explored. Figures 6 to 8 display the FTIR curves of the 
specimens under different erosion conditions.

Existing research32-34 shows that according to different 
sulfate erosion products, sulfate erosion types are divided 
into the following three types: ettringite (3CaO·Al2O3· 
3CaSO4·32H2O), gypsum (CaSO4), and thaumasite 

Fig. 4—(a) Effect of different sulfate concentrations on flexural strength; (b) effect of different erosion methods on flexural 
strength; and (c) effect of control group on flexural strength at different erosion times.
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Fig. 5—Diagram of test sample sampling.

Fig. 6—(a) FTIR spectra at 5% erosion concentration; and (b) FTIR spectra at 10% erosion concentration.
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(CaCO3·CaSiO3·CaSO4·15H2O). According to the FTIR 
curves in Fig. 6 to 8, the stretching vibration of the S-O bond 
at 1080  cm–1 and the bending vibration peak at 603  cm–1 
appear, indicating that SO4

2– exists in the sample. The char-
acteristic peaks at 660 and 460 cm–1 indicate that gypsum 
crystals also exist in the sample,35 but the stretching vibra-
tion characteristic peaks of the Al-O bond and SiO6 are not 
observed at 550 and 750 cm–1. Therefore, it can be prelim-
inarily speculated that the mechanochemical one-part 
alkali-activated material mostly experiences gypsum-type 
erosion damage under sulfate attack. Additionally, there are 
obvious characteristic peaks at 876 and 1458 cm–1 bands in 
the sulfate attack specimens. These are caused by bending 
vibration and stretching vibration of the O-C-O bond,36 
indicating that carbonate is present in the sample. With 

the erosion of sulfate into the interior of the specimen, the 
content of metal cations (Mg2+ and Na+) in the pore solution 
of the specimen increases significantly. There is a certain 
concentration of OH– in the pore solution, so Mg2+ and OH– 
can easily combine to form Mg(OH)2 with lower solubility, 
as Eq.  (1) shows. This subsequently leads to aggregation 
of the O-H bond, which is confirmed by the characteristic 
peaks of O-H bonds causing stretching and bending vibra-
tions in the 3410 and 1620 cm–1 bands.37

	 Ca(OH)2 + Mg2+ + SO4
2– → CaSO4 + Mg(OH)2	 (1)

	 C(-A)-S-H + Mg2+ + SO4
2– + 2H2O →  

	 M(-A)-S-H + 2H2O · CaSO4	 (2)

Fig. 7—(a) FTIR spectra of MgSO4 solution under erosion conditions; and (b) FTIR spectra of Na2SO4 solution under erosion 
conditions.
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Figure 6 presents the FTIR change of sulfate species and 
concentrations on the erosion products of mortar specimens. 
Compared with Na2SO4 erosion, under the action of MgSO4 
erosion, the FTIR curve has more characteristic peaks of 
gypsum at the 603 and 660 cm–1 bands. At the same concen-
tration, the gypsum content after 90 days is higher than at 
30. At the same stage, the characteristic peak of gypsum 
on M10F is more obvious than for M5F, indicating that the 
gypsum content increases with erosion time and concentra-
tion. With larger Mg2+ concentrations in the solution, Ca2+ is 
removed from C-S-H and C-A-S-H and Mg2+ replaces Ca2+ 
to form new M-S-H and M-A-S-H without bond strength.38,39 
Subsequently, the dissociated Ca2+ combines with SO4

2– to 
form expansive gypsum, such as in Eq. (2). The volume of 
2H2O·CaSO4 formed with pore water increases by a factor 
of 1.24. Besides, the pores of the specimens are subjected 
to expansion and extrusion pressure on the pore walls due 

to an increase in the volume of erosion products, resulting 
in the generation of microcracks. The width of the cracks 
grows with increased concentrations and erosion time, and 
the strength of the specimen also decreases rapidly. The 
phenomenon of specimen edges falling off also becomes 
more serious with increased concentrations. Figure 9(a) 
illustrates the appearance of the specimens. Characteristic 
peaks near 2925 cm–1 appear on the FTIR curve, revealing 
that calcite is produced by MgSO4 and Na2SO4 solution 
erosion. The characteristic peaks of calcite produced by 
sodium salt are more obvious. Compared with MgSO4 salt 
erosion, sodium salt erosion also has its unique erosion 
products. The characteristic peak intensities of the Na2SO4 
erosion specimens at 876 cm–1 and 1458 cm–1 bands are 
more obvious, indicating that more carbonates are generated 
in the Na2SO4 erosion specimens. This carbonate does not 
result in excessive volume expansion, and the integrity of 

Fig. 8—(a) FTIR spectra of eroded 30-day specimens; and (b) FTIR spectra of eroded 90-day specimens.
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the specimen appears strong, without any obvious cracks, as 
Fig. 9(b) shows. This is consistent with the research results 
of Ismail et al.,39 which stated that Na+ ions are useful in 
maintaining the chemical stability of the pore solution of 
alkali-activated mortar specimens, while Mg2+ ions destroy 
C-S-H condensation.

Figure 7 represents FTIR changes of the erosion products of 
mortar specimens by sulfate erosion. Under MgSO4 erosion, 
a weak characteristic peak at the 603 cm–1 band appears in 
the M5F specimen at 30 days, but a characteristic peak was 
not observed in the wetting-and-drying cycle erosion spec-
imen. For specimens at the 90-day stage, characteristic peaks 
appear near 660 and 460 cm–1 in the two erosion modes. The 
characteristic peak of the specimen under full immersion is 
more obvious, indicating that gypsum is more likely to be 
produced by full-immersion erosion. Under the action of 
Na2SO4 solution erosion, the characteristic peak intensity of 
the N5DW specimen at 876 and 2925 cm–1 is greater than 
the N5F specimen, indicating that there is higher carbonate 
content in the wetting-and-drying cycle erosion specimen, 
which is in contact with the air for 8 hours when drying. The 
CO2 in the air dissolves very easily in the surface adsorption 
water of the specimen. When the surface adsorption water 
gradually evaporates, it permeates the specimen through the 
liquid in the capillaries and promotes the carbonization of 
the specimen to produce calcium carbonate minerals. Obser-
vations indicate that the corners of the specimens subjected 
to wetting-and-drying cycle erosion appear to be detached, 
and their surfaces become rough and softened. For speci-
mens subjected to full-immersion erosion, angular shedding 

is not obvious, but serious cracks occurred around the spec-
imens corroded by MgSO4 solution. Figure  10 shows the 
details.

Figure 8 presents the FTIR changes in erosion products of 
the one-part alkali-activated fly ash-slag mortar specimens 
prepared by the mechanochemical method, as well as the 
control group. Compared with O-M5F, the characteristic peak 
intensity of the S-M5F specimen at the 603 and 1100 cm–1 
bands is more obvious, indicating that the gypsum content 
in the S-M5F specimen is higher. The stretching vibration 
frequency of O-H is in the range of 3550 to 3720 cm–1, and 
the characteristic peak of 3644 cm–1 in the FTIR curve of the 
O-M5F corresponds to Ca(OH)2. In contrast to the hydra-
tion products of traditional PC, the cohesive cementing of 
alkali-activated materials is mainly achieved by C-S-H and 
C-A-S-H. Thus, Ca(OH)2 is not produced, which is consis-
tent with the results of Komljenović et al.40 The bond energy 
of C-O is lower than the C-S bond and is easier to break. 
Therefore, when MgSO4 erodes, it preferentially reacts with 
Ca(OH)2. The presence of Ca(OH)2 effectively protects the 
stability of the C-S-H gel, while the alkali-activated mate-
rial does not contain Ca(OH)2. Compared to N-A-S-H, 
C-S-H and C-A-S-H are less resistant to sulfate,41,42 causing 
a greater destructive effect. MgSO4 erosion may destroy 
C-S-H and C-A-S-H gel, resulting in a more damaging 
effect. This is why the resistance of traditional PC to sulfate 
attack is better than the other two groups of alkali-activated 
materials, and the apparent compactness of traditional PC 
specimens is superior. The apparent compactness of the 
main part of the specimens prepared by mechanochemistry 
and simple mixing is satisfactory, but cracks appeared at the 
edge of the specimens, as Fig. 11 illustrates.

Fig. 9—Appearance effect of sulfate type and concentration on appearance of specimens after 90 days of corrosion.

Fig. 10—Appearance effect of different erosion modes on specimens after 90 days of corrosion.
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X-ray diffraction analysis—XRD is the most powerful 
method for studying inorganic crystal structures and is suit-
able for the phase analysis of crystalline materials. According 
to differences in the diffraction spectrum of the crystal in the 
number, angle position, relative intensity order, and shape of 
the diffraction peak, the constituent elements or groups of 
crystalline substances can be determined.

Figures 12 and 13 present XRD images of the sulfate 
attack specimens. For the XRD of mortar specimens, 
the diffraction peak intensity of quartz crystal at 25 to 
28 degrees is extremely high, and this high diffraction peak 
masks the weak diffraction peaks of other crystals. At the 
positions of 25 to 30 degrees, a wide dispersion peak appears 
in the spectra, which indicates the existence of amorphous 
substances, mostly comprising N-A-S-H and C-A-S-H. 
Additionally, C-S-H gel causes the peaks at 32 to 40 degrees 
and 45 to 50 degrees.43 In this study, the corrosion products 
of sulfate attack mortar specimens were analyzed using 
XRD analysis technology and compared with the results of 
the corrosion products obtained by FTIR analysis to obtain 
more accurate experimental results. According to the XRD 
analysis, the crystals in the erosion products mainly contain 
gypsum, Ca(OH)2, and calcite.

Figure 12 displays XRD spectra of different sulfate 
attack specimens. The product of MgSO4 solution erosion 
is mainly gypsum, while Na2SO4 solution erosion contains 
parts of gypsum, but mostly calcite. With increased erosion 
times from 30 to 90 days, the diffraction peak intensity of 
gypsum crystals in the XRD specimens increases moderately 

for MgSO4 solution erosion. However, the types of erosion 
products do not change. Comparing the erosion products of 
the Na2SO4 solution and the MgSO4 solution, after 30 days, 
only the diffraction peak of calcite crystal was found in the 
XRD specimens of the Na2SO4 solution erosion products. At 
90 days, there are many weak diffraction peaks of gypsum 
crystal in the XRD specimens, and the diffraction peak of 
calcite is also enhanced. This phenomenon further illustrates 
that MgSO4 solution erosion produces a large amount of 
gypsum and results in severe gypsum-type erosion damage. 
For Na2SO4 solution erosion, in the early stage of erosion, 
the damage is mainly carbonized. However, in the later stage 
of erosion, carbonation degradation and gypsum erosion 
damage occur simultaneously. Nevertheless, sodium sulfate 
solution erosion produced less gypsum-type damage than 
magnesium sulfate solution erosion, which is consistent with 
the FTIR analysis results.

Figure 13 shows the XRD diagram of the immersed spec-
imens from the control group. Compared with the one-part 
alkali-activated specimens prepared by mechanochemistry, 
the sulfate attack products all contain gypsum crystal diffrac-
tion peaks. When the erosion time is 30 days, the gypsum 
crystal diffraction peak intensity of the S-M5F specimen is 
greater than the M5F specimen, while the gypsum diffraction 
peak of the O-M5F specimen is not obvious. After 90 days, 
the diffraction peaks of gypsum in the control group were 
enhanced, indicating an increased accumulation of gypsum 
from erosion. Besides, the specimens exhibit expansion 
cracking, as Fig. 11 illustrates. In the XRD specimens, the 
O-M5F sample has an obvious Ca(OH)2 diffraction peak, 
which is produced by the hydration of traditional silicate 

Fig. 11—Appearance effect of control specimen after 90 days of 5% MgSO4 solution erosion.

Fig. 13—XRD spectra of control immersion specimens.
Fig. 12—XRD spectra of different sulfate attack specimens.
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cement. However, it could not be determined whether they 
are erosion products or not. In Fig. 13, the intensity of the 
Ca(OH)2 diffraction peak of the O-M5F specimen decreases 
with longer invasion times. It is possible that the decrease 
in Ca(OH)2 content is caused by resistance to sulfate attack. 
Sulfate invades the pore solution with high alkalinity, while 
Mg2+ and OH– combine to form Mg(OH)2. This substance 
is insoluble in water, and consequently reduces the alka-
linity of the pore solution. To maintain the alkaline balance 
of the pore solution, the slightly soluble Ca(OH)2 solid 
constantly dissolves in water, resulting in a continuous 
decrease of Ca(OH)2 and causing a softening of colloidal 
sand and reduction in strength.44 The hydration products of 
alkali-activated cementitious materials are mainly C-S-H 
and C-A-S-H, while almost no Ca(OH)2 and stable bonded 
aluminum phases are produced.45 Therefore, no Ca(OH)2 
diffraction peak was observed in the alkali-activated mate-
rial specimens.

Mercury intrusion porosimetry—The pore structure 
connects the microstructure and macrostructure of the 
mortar, which is an important factor affecting mechanical 
properties and durability. There is a wide range of hole struc-
ture size distributions, the pore shape varies, and the system 
is complex. The pore structure may be divided into gel pores 
(<10 nm), transition pores (10 to 100 nm), capillary pores 
(100 to 1000 nm), and large pores (>1000 nm), according to 
the pore size.46,47 Some scholars48,49 believe that the strength 
and durability of concrete mainly depend on harmful pores 
larger than 100 nm, while pores smaller than 100 nm have a 
limited influence. In this section, MIP was used to analyze 
the porosity of mortar specimens against sulfate attack. This 
method measures pores with diameters of 0.005 to 1000 μm 
and provides valuable information regarding the pore struc-
ture analysis of concrete, as Fig. 14 displays.

Figure 14(a) shows the pore structure parameters of mortar 
specimens subjected to different types of sulfate attack. 
With increased erosion time, the pore structure distribution 
becomes homogenized, thus increasing the harmful pores 
and decreasing the porosity of the specimen. Taking MgSO4 
corrosion as an example, the porosity, gel pores, transition 
pores, capillary pores, and macropores of the 90-day speci-
mens change by –24.55%, 11.75%, –49.80%, 18.61%, and 
31.01%, respectively, compared with the 30-day specimens. 
For the MgSO4 erosion specimens, in the early stage of 
erosion, new C-A-S-H and C-S-H gels are generated. This is 
due to the secondary volcanic ash reaction of fly ash, which 
may effectively fill the pores of specimens and increase the 
compactness. At the same time, the surplus gypsum produced 
by MgSO4 erosion may fill the pores further. However, 
with an increase in the invasion time, the pozzolanic effect 
decreases, but the gypsum produced by erosion continues to 
increase. Excessive gypsum accumulation is certain to exert 
tremendous pressure on the pores, which increases the size 
of the small pores as well as the number of harmful pores. It 
also weakens erosion resistance and allows the large pores to 
progress into microfractures. When the microcracks connect, 
the specimen may suffer acute damage and the strength of 
the specimen may decrease rapidly. In the early stage of 
erosion of the Na2SO4 specimen, the calcium carbonate 

minerals produced by Na2SO4 erosion fill the pores and 
make them denser, thus enhancing the strength of the spec-
imen. Furthermore, continuous accumulation of calcium 
carbonate minerals generates huge extrusion pressure on the 
pore walls, leading to microcracks inside the specimen and 
prompting a rapid reduction in strength. Therefore, a much 
more obvious reduction in strength occurs in the later stages 
of sulfate invasion.

Figure 14(b) illustrates the pore structure parameters of 
the control group mortar specimens. It was observed that the 
pore structure of O-M5F was not significantly different after 
30 and 90 days of erosion, with harmless gel pores and tran-
sition pores accounting for 71.19% of the total pore struc-
ture at 30 days and 69.85% at 90 days. The main pore struc-
tures of S-M5F and M5F are also predominantly gel pores 
and transition pores, accounting for 71.53% and 61.91% of 
the total pore structure, respectively. Previous reports have 
shown that the pore size of alkali slag materials is mainly 
distributed between 1 and 20 nm, while the pore size of 
OPC is between 10 and 100 nm.50,51 The O-M5F specimen 
has small porosity, and the C-S-H gel produced by conven-
tional PC fills the pore structure and microcracks, leading 
to a reduction in the proportion of large pores and cracks 
with high compactness. This effectively prevents the sulfate 
erosion solution from entering the interior of the specimen 
and slows down the replacement reaction of Mg2+ and SO4

2– 

with Ca2+ in C-S-H, thus reducing the damage caused by 
sulfate erosion.

The gel pore occupancy of the alkali-excited material is 
greater, and the water absorption rate is two to three times 
higher than OPC,52,53 which provides Mg2+ and SO4

2– with 
excellent channels for erosion, allowing them to gradu-
ally migrate to the interior of the specimen with the pore 
solution. Additionally, the concentration of alkali metal 
ions in the pore solution of the alkali slag material is high, 
exceeding OPC by nearly 10 times.54 The high alkalinity of 
the pore solution provides suitable reaction conditions for 
Mg2+, OH–, and SO4

2– to combine with Ca2+ in C(-A)-S-H, 
destroying the C(-A)-S-H gel bonds and making the pore 
structure of the specimen flimsy. However, the flimsy pore 
structure further contributes to the accelerated erosion rate, 
and the alkali-excited material specimens suffer severe 
erosion damage. Mechanical-force chemistry not only 
further activates the volcanic ash activity of the precursors, 
but also allows the precursors and alkali excipients to mix 
sufficiently for a stable and effective volcanic ash reaction, 
resulting in higher strength, less porosity, and superior resis-
tance to sulfate in M5F than in S-M5F.

CONCLUSIONS
In this paper, the mechanochemical preparation of one-part 

alkali-excited mortars for resistance to sulfate attack was 
systematically studied. Based on macro and micro experi-
mental data and experimental results, the following conclu-
sions were obtained:

1. The tests in this paper show that highly concentrated 
MgSO4 solution damages the strength of the specimens most 
severely under wetting-and-drying cyclic conditions. This 
is probably because the MgSO4 solution not only provides 
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erosive SO4
2– ions, but Mg2+ ions are also involved in the 

erosion process. Moreover, there are variations in the sensi-
tivity of flexural and compressive strength to different types 
of sulfate erosion. The compressive strength of specimens is 
more sensitive to MgSO4 solution erosion, and the flexural 
strength is more sensitive to Na2SO4 solution erosion.

2. The mechanical-force chemical activation of gelling 
material precursors promotes the fine release of precursor 
particles with the promotion of volcanic ash activity 
and allows full mixing of the precursors and solid alkali- 
excitation agent. The adequate mixing of single-part alkali- 
excited materials provides a guarantee for stable and effec-
tive volcanic ash reactions. This is reflected in both porosity 
and strength, because M5F has lower porosity than S-M5F, 
while M5F has higher strength than S-M5F.

3. Under different types of sulfate erosion, the erosion 
products vary. According to Fourier-transform infrared 

spectroscopy (FTIR) and X-ray diffraction (XRD) analysis, 
it was observed that under Na2SO4 solution erosion, the 
erosion products of the specimen are mainly calcite in the 
early stage and a combination of calcite and gypsum in the 
later stage. For MgSO4 solution erosion, the erosion prod-
ucts generated inside the specimen are gypsum, which indi-
cates gypsum-type swelling erosion damage.

4. The mechanism of resistance to sulfate attack varies 
between alkali-stimulated cementitious materials and ordi-
nary portland cement (OPC). The Ca2+ in C-A-S-H in alkali- 
excited cementitious materials is replaced by Na+ and Mg2+ 
ions, and free Ca2+ combines with SO4

2– to produce gypsum. 
Conventional silicate cements contain large amounts of 
Ca(OH)2, which provides Ca2+ and slows the rate of C-S-H 
gel destruction, resulting in silicate cement samples that 
maintain some steady-state strength loss and pore structure 

Fig. 14—(a) Pore structure changes under different kinds of sulfate erosion conditions; and (b) changes in pore structure of 
control group under different erosion time conditions.
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damage at 90 days of erosion, with less damage than alkali- 
excited specimens.

5. In this paper, the three aspects of sulfate type, concen-
tration, and erosion mode were studied to simulate a genuine 
erosion environment. However, real environments are very 
complex and factors such as load size, temperature change, 
and sulfate type all have an impact on erosion. Therefore, 
further investigations are required to understand the mecha-
nism of sulfate erosion from other aspects, which will help 
to improve the study of the sulfate erosion of alkali-excited 
materials.
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In spite of feldspars being the most plentiful components in the 
crust of the earth, their uses in alkali-activated materials are still 
too limited. In this work, for the first time, the effect of different 
ratios of potassium feldspar on the properties of alkali-activated 
slag (AAS) concrete was studied. The slag was partially replaced 
with 10 to 50% feldspar with a stride of 10 wt. %. The effects of 
feldspar on the workability, compressive strength, splitting tensile 
strength, water absorption, and total porosity of AAS concrete were 
investigated. Different techniques were applied to investigate the 
crystalline phases, hydration products, and microstructures of the 
critical samples. The results showed a positive effect of feldspar 
on workability, of which the workability increased with increasing 
feldspar ratio. The incorporation of 10% feldspar has a positive 
effect on compressive strength, splitting tensile strength, water 
absorption, total porosity, and refining the microstructure, while 
higher ratios than 10% have a negative effect.

Keywords: alkali-activated slag (AAS); compressive strength; feldspar; 
splitting strength; total porosity; water absorption.

INTRODUCTION
Recently, there is no material in existence more widely 

used than concrete. After water, it is the second most-used 
material on the planet. Currently, the global production of 
concrete is approximately 4.4 billion tons per year. This 
number is expected to increase to reach approximately 
5.5  billion tons by 2025.1 Because portland cement (PC) 
is the primary ingredient of concrete, a huge amount of 
cement is produced per year. Unfortunately, cement is the 
source of approximately 8% of global carbon dioxide (CO2) 
emissions.2 These recent high CO2 emissions have led to an 
increase in the global temperature by an average of 1°C. It 
is expected that by 2025, the CO2 emissions may increase as 
high as 450 to 550 ppm. This means that the average world-
wide temperature may increase by approximately 1.4 to 
5.8°C, leading to a negative effect on the economy, health of 
humanity, and environment.3 The cement sector is the third-
largest industrial pollution source, generating approximately 
500,000  tons annually of nitrogen oxide (NOx), sulfur 
dioxide (SO2), and carbon monoxide (CO). Cement produc-
tion consumes 12 to 15% of global energy resources per 
year.4 At the same pace, the production of cement consumes 
a large amount of natural raw materials. One strategy to limit 
the consumption of cement is replacing some cement with 
cementitious materials such as fly ash (FA),5 metakaolin 
(MK),6 and slag.7 Another more effective strategy to hinder 
cement production is producing new types of binders that 
are free from PC, such as alkali-activated materials (AAMs). 
Using the former materials have a positive effect on reducing 

CO2 emissions and can reduce the energy consumption and 
virgin materials required for the PC industry. AAMs are 
produced by activating materials rich with aluminosilicate 
such as MK, FA, and slag. Through the different precur-
sors used for AAMs, slag is the most widely used due to 
its availability and simple curing, which does not need heat 
curing.8 Since the first use of alkali-activated slag (AAS) 
in 1930, when Kull investigated the setting time of slag 
powder activated with potash solution,9 the development of 
AAS properties is still ongoing. The wide option to improve 
AAS systems is blended slag with a suitable amount of other 
material(s) such as quartz powder,10 silica fume (SF), MK, 
FA, and so on.11

Feldspars are the most considerable mineral in the oceanic 
and continental earth crust. More than half of the earth’s 
crust is made up of feldspar minerals.12 They are an alumino-
silicate based on the three-dimensional framework of linked 
Si and Al-O tetrahedral, and are mostly gray, pink, or white 
in color. Plagioclase and potassium feldspars are the two 
primary groups of feldspars.13 Potassium feldspars have a 
wide range of applications, of which they play a crucial role 
in the production of fillers for rubber, paints, and the plastic 
and adhesive industries. In addition to these applications, 
they are also used as fluxes in ceramics and glass. Generally, 
there are numerous uses of feldspars on a daily basis, such as 
shower basins in bathrooms, floor tiles, fiberglass, drinking 
glasses, dishes, and tableware. In the field of cementitious 
materials, feldspar can be used as a pozzolanic material in 
PC systems. Yao et al.14 showed that the pozzolanic activity 
of feldspar increased when decreasing its crystallization 
degree and vice versa. Khoshkbijari et al.15 reported that the 
incorporation of 10 to 30% feldspar by weight in mortars 
as a cement substitution enhanced the residual strength 
and decreased water absorption of the mortars after being 
exposed to 600°C. Enríquez et al.16 found better reflectance, 
whiteness, and thermal conductivity of pastes by partially 
replacing cement with 15 and 25% feldspar by weight. 
Constantiner and Diamond17 reported that employing feld-
spar as a fine aggregate in cement mortars released alkali 
ions into the pore solution. These releases can contribute to 
alkali-silica reaction (ASR) activity if ASR-reactive aggre-
gate was incorporated. For AAMs, there are too limited 
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studies using feldspar as a precursor or a part of a precursor. 
In this regard, Xu and van Deventer18 reported that feld-
spar (sodium and potassium) showed high dissolution in an 
alkali solution and a high aptitude for geopolymerization. 
Tian et  al.19 used K-feldspar/quartz as aggregates, MK as 
the precursor, and NaOH and water-glass solution as the 
alkaline activators to manufacture geopolymer bricks. They 
concluded that NaOH can be reduced in the mixture with the 
inclusion of K-feldspar due to its solubility in the alkaline 
solution. González-García et al.20 used plagioclase feldspar 
as a precursor. NaOH and sodium silicate solution were used 
as alkaline activators. The results showed that a compressive 
strength of 13.2 MPa at the age of 28 days can be obtained 
for specimens cured at room temperature. Abdel-Gawwad 
and Khalil21 prepared a one-part geopolymer cement from 
60% cement kiln dust and 40% feldspar activated with soda 
ash. They reported that the vitrification temperature and its 
duration, as well as the concentration of soda ash, have a 
major effect on the obtained compressive strength.

RESEARCH SIGNIFICANCE
As shown in the aforementioned survey, there are too 

limited studies focused on employing feldspar as a cementi-
tious material, and hitherto, there is no publication focused 
on the effect of feldspar on the main properties of AAS 

concrete. Thus, for the first time, the effects of different 
ratios of feldspar on AAS concrete properties were investi-
gated. For this purpose, the slag was partially replaced with 
feldspar at ratios oscillating from 10 to 50 wt. % with a stride 
of 10  wt. %. After mixing, workability was determined. 
After room-temperature curing, compressive strength, split-
ting strength, water absorption, and total porosity were 
determined. After 28 days of curing, critical samples were 
examined by X-ray diffraction (XRD), thermogravimetric 
analysis (TGA), and scanning electronic microscopy (SEM) 
to investigate the change in the crystalline phases, hydration 
products, and microstructure morphologies, respectively. 
This investigation can add new data about new uses for a 
suitable ratio of feldspar in the field of AAS systems.

EXPERIMENTAL DETAILS
Materials

The main precursor was a slag. It was delivered from 
a factory in Cairo, Egypt, in water quenching fine grains. 
The delivered slag was then ground by a special ball mill to 
reach a Blaine surface area of 300 m2/kg. Its specific gravity 
was 2.9. Potassium feldspar was delivered from local Egyp-
tian quarries. Its Blaine surface area was 500 m2/kg, while 
its specific gravity was 2.57. An amorphous slag phase is 
shown in Fig. 1(a), which is assured by a broad swelling 
at 25 to 35 degrees 2θ, while the feldspar shows crystalline 
phases of microcline, quartz, and albite (Fig. 1(b)). Feld-
spar morphology is plate-like, crystal grains with a compact 
configuration (Fig. 2), while slag morphology shape is irreg-
ular, jagged, and angular, as reported in a previous work.22 
The chemical composition of the precursors and aggregates 
analyzed by an X-ray fluorescence (XRF) spectrometer is 
given in Table 1. Local commercial liquid sodium silicate 
solution (38.2% SiO2, 11.3% Na2O, and 50.5% water) was 
used as a part of the alkaline activator. High-purity (99%) 
NaOH pellets were delivered from a chemicals company 
in Cairo and employed as a part of the alkaline activator. A 
high-range water reducer (HRWR) in the form of an aqueous 
solution of modified polycarboxylates was also used; it 
complies with the requirements of ASTM C494/C494M-19 
Type F.23 The fine aggregate was natural siliceous sand. Its 
particle-size distribution (ES 1109/202124) is placed within 

Fig. 1—XRD patterns of: (a) slag; and (b) feldspar.

Fig. 2—Morphology of feldspar.
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the range of the medium grading zone. Its water absorption 
(ASTM C128-1525) and fineness modulus (ASTM C136/
C136M-1426) were 1.5% and 2.75, respectively. The coarse 
aggregate was a natural crushed stone, with more than 90% 
of the coarse aggregate particles having a size of 10 mm. 
Its water absorption and fineness modulus were 0.95% and 
6.8, respectively. Figure 3 shows the general view of the raw 
materials used in this investigation.

Mixture preparation and methods
The neat slag concrete mixture without any ratio of feld-

spar was used as a reference. This mixture was designated 
as F0. The remaining mixtures were prepared by partially 
replacing slag with feldspar at ratios of 10, 20, 30, 40, and 
50 wt. %. These mixtures were designated as F10, F20, F30, 
F40, and F50, respectively. NaOH pellets were dissolved in 
water to obtain a 14 M concentration. This solution was left 
for 24 hours before use to get rid of the rising of solution 
temperature. After that, one part of NaOH (14 M) was mixed 
with 2.2 parts of sodium silicate to prepare the alkaline solu-
tion. The concentration of this solution was fixed at 35 wt. % 
of the powders (slag and feldspar). A fixed level of HRWR at 
a dosage of 3% was used. This dosage was premixed with the 
extra water. A fixed ratio of extra water/powders of 0.14 was 
used. The coarse-to-fine aggregate ratio was 1.5 by weight. 
Table 2 summarizes the ingredients of the designed concrete 
mixtures. Similar mixtures without aggregates (pastes) for 
F0, F10, and F50 were prepared for XRD and TGA tests.

The mixing operations sequenced were as follows: the 
powders, fine aggregate, and coarse aggregate were carefully 

mixed in a drum electrical mixer for 5 minutes. The alkaline 
solution and HRWR premixed with extra water were added 
and mixed for 5 minutes. After reaching a homogenous 
mixture, a sample of fresh concrete was employed for the 
slump test to measure the workability according to ASTM 
C143/C143M-1227 at the same time the different molds were 
filled in three equal layers. The filled molds were vibrated 
on a special shake table for 1 minute. The top surface was 
leveled and covered with a thin plastic sheet to prevent water 
evaporation. After 24 hours of casting, the specimens were 
demolded and cured at room temperature until the age of 
testing. Figure 4 shows live photos during mixing.

Cube specimens with dimensions of 100 x 100 x 100 mm 
were used for compressive strength measurements in agree-
ment with BS EN 12390-3:2019.28 Three specimens from 
each mixture were tested in compression at the ages of 7, 28, 
and 56 days and the average was determined. Cylinder spec-
imens with a diameter of 100 mm and a height of 200 mm 

Table 1—Chemical composition of precursors  
and aggregates

Oxide, % Slag, % Feldspar, %
Coarse 

aggregate, %
Fine 

aggregate, %

SiO2 33 74.6 1.67 93.4

Al2O3 16 12.2 0.07 2.03

Fe2O3 1.5 1.38 0.01 0.98

CaO 37.39 1.86 35.54 0.71

MgO 6.19 0.28 17.51 0.25

K2O 0.93 5.66 0.02 0.64

Na2O 1.84 2.83 0.04 0.38

SO3 1.86 0.28 0.13 0.3

MnO 0.53 0 — 0.03

TiO2 0.83 0.12 0.01 0.17

BaO 0.3 0.05 — —

SrO 0.14 0 — —

ZrO2 0.07 0 — —

P2O5 0.02 0.03 0.01 0.06

Cl– 0.18 0.12 — 0.08

Cr2O3 0 0.05 — —

ZnO 0 0.03 — —

LOI 0.51 0.5 44.99 0.74

Note: LOI is loss on ignition.

Fig. 3—Optical view of starting materials.
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were used for splitting tensile strength measurements in 
agreement with BS EN 12390-6:2009.29 Three specimens 
from each mixture were tested at the age of 28 days and 
the average was determined. A testing machine with a 
capacity of 5000 kN (Fig. 5) was used for this purpose. 
Cubes specimens with dimensions of 100 x 100 x 100 mm 
(Fig. 6) were used for water absorption and total porosity 
measurements. After curing for 28 days, the water absorp-
tion and total porosity of different concrete specimens were 
measured following ASTM C642-21.30 For each test, three 
specimens were tested and the average was determined. To 
measure XRF (Fig. 7), the sample was pressed into pellets. 
The sample was exposed to X-ray light, which excites the 
elements present in the sample. The elements release light 
as they return to their ground state. The light released as 
the elements relax is identifiable to the particular element 
present in the sample, and measuring the fluorescence makes 
it possible to calculate the exact chemical composition of 

the sample. After curing for 28 days, the cast pastes (for F0, 
F10, and F50) were prepared and tested under XRD and 
TGA in a similar way reported in Rashad and Essa,31 while 
the extracted samples from selected concrete cubes (F0, F10, 
and F50) after crushing at the age of 28 days were prepared 
and tested under SEM. Each extracted sample (with a suit-
able size) was cleaned and coated with a thin layer of gold to 
make it conductive. Each sample was dried before placing in 
the testing machine. In this investigation, the SEM analysis 
was performed by scanning electron microscope, similar to 
Rashad and Essa.31

RESULTS AND DISCUSSION
Workability

Figure 8 shows live photos during measuring the slump, 
while Fig. 9 shows the effect of various ratios of feldspar on 
the slump. As can be observed, the slump of the mixtures 
strongly depends on the ratio of feldspar. Despite the fact 
that slag particles are less fine (coarser) than feldspar ones, 
the incorporation of feldspar in the mixture has a positive 
effect on the workability, which increased with increasing 
the ratio of feldspar. Introducing only 10% feldspar in 
the mixture (F10) led to an increase in the slump by 25% 
compared to the control (F0). Increasing the feldspar ratio 

Table 2—Concrete mixture proportions

ID

Ingredients, kg/m3

Slag Feldspar NaOH (14 M) Sodium silicate Extra water HRWR Fine aggregate Coarse aggregate

F0 550 0 60 132.5 78 16.5 592.6 888.92

F10 495 55 60 132.5 78 16.5 592.6 888.92

F20 440 110 60 132.5 78 16.5 592.6 888.92

F30 385 165 60 132.5 78 16.5 592.6 888.92

F40 330 220 60 132.5 78 16.5 592.6 888.92

F50 275 275 60 132.5 78 16.5 592.6 888.92

Fig. 4—Live photos during mixing.

Fig. 5—Optical view of testing machine.
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to 20 to 40% led to an additional increase in the workability, 
of which the slump was increased by 50 to 112.5%. The 
highest slump (125%) was achieved when 50% of the slag 
was replaced by feldspar (F50). The higher workability with 
the inclusion of feldspar, even though its surface area is 
higher than that of slag, could be attributed to its fine parti-
cles that can fill the voids between slag particles. Filling 
these voids led to less water demand needed to fill the voids. 
In addition, increasing the feldspar ratio in the mixtures led 
to increasing the silica ratio and decreasing the calcium ratio 
(Table 3), which have a positive effect on the workability. It 
was reported that the workability increased with increasing 
the silica modulus of the geopolymer.32,33 Rashad and Sadek34 
reported that a higher calcium ratio in the geopolymer 
mixture led to lower workability. It is worth mentioning that 
the results obtained by Puertas et al.35 revealed that the silica 
ratio increased in the AAS paste mixtures as the workability 
increased. In such a way, Ramezanianpour and Moeini36 
found higher flowability of AAS/SF mortar mixtures with 
increasing silica ratio. Yaseri et al.32 observed a higher 
spread diameter of MK/SF geopolymer paste mixtures with 
increasing Si/Al ratio.

Mechanical strength
Figure 10 shows the compressive strength at 7, 28, and 

56  days. As can be noted, the compressive strength is 
affected by the hydration time and the feldspar ratio. As is 
known, the compressive strength increased with increasing 
hydration time. The specimens free from feldspar (F0) 
show a good deal of compressive strength, with strengths 
of 29.9, 34.5, and 39.17 MPa at 7, 28, and 56 days, respec-
tively. The incorporation of feldspar has a major effect on 
compressive strength, of which it may increase or decrease. 

This mainly depends on the feldspar ratio. The incorpora-
tion of 10% feldspar can efficiently enhance the compres-
sive strength by 25.77%, 18.48%, and 15.48% at 7, 28, and 
56 days, respectively. The highest ratio of enhancement 
was observed at 7 days (25.77%) compared to those at 28 
(18.48%) or 56 days (15.48%). This means that the suitable 
ratio of feldspar has a pronounced effect on the early-age 
strength. The enhancement of the compressive strength 
could be attributed to more than one reason. One reason is 
the fine feldspar particles can act as microaggregates. These 
microaggregates can help in blocking the pores between the 
slag skeleton, decreasing total porosity, refining the micro-
structure, and can act as nuclei sites.22 Another reason for 
enhancing the strength is increasing the Si/Al molar ratio 
with the incorporation of 10% feldspar from 4.48 for F0 

Fig. 6—Optical view of cube testing specimens.

Fig. 7—Optical view of XRF tool.

Fig. 8—Live photos during slump measuring.
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to 5 for F10 (Table 3). A higher Si/Al ratio, up to a certain 
level, led to prevailing structures of polysialatedisiloxo and  
poly(sialate-siloxo) (Si-O-Si) in geopolymer lattice rather 
than structures of polysialate (Si-O-Al).37,38

The incorporations of feldspar at ratios higher than 
10% did not show any positive effect on the compressive 
strength, but strength degradation was obtained. The incor-
porations of 20%, 30%, 40%, and 50% feldspar decreased 
the strength by an average of 6.59%, 16.96%, 18.21%, and 
34.1%, respectively. This reduction could be attributed to 
the higher silica ratio than required. This further increase in 
silica ratio can decrease the solubility/formation of the gel, 
which can lead to an increase in the number of unreacted 
particles,39,40 leading to a porous and weak structure.41,42 The 
previous results revealed that the compressive strength of 
AAS/FA/SF mortars43 or pastes44 increased with increasing 
silica ratio up to a certain level, then decreased with a further 
increase in this ratio. Similarly, an increase in the compres-
sive strength of AAS/SF pastes44-46 and mortars36 was found 
when increasing the silica ratio up to a certain level, then a 
reduction was observed with a further increase in this ratio. 
Another reason for the reduction in the compressive strength 
with ratios of feldspar higher than 10% is increasing the 
crystalline phases and reducing the amorphization degree, 
which will be discussed later.

Figure 11 shows live photos during measuring of the 
splitting strength, while Fig. 12 shows the results of split-
ting strength at the age of 28 days. The specimens without 
feldspar show a reasonable value of splitting strength 
(2.51  MPa). This value is higher than that mentioned in 
Hammad et al.47 and lower than that reported in Mithun 
and Narasimhan.48 The splitting strength was enhanced by 
approximately 9.5% with the incorporation of 10% feld-
spar (F10). Further increasing the feldspar ratios to 20%, 
30%, 40%, and 50% resulted in a reduction in the splitting 
strength by 2.4%, 7.7%, 14.34%, and 20.32%, respectively. 
The reasons for increasing or decreasing splitting strength 
with the variation of feldspar ratios are similar to those of 
compressive strength.

Water absorption and total porosity
A matrix’s ability to absorb water is an important factor 

in determining its durability and the presence of shrinkage 
cracks. In water absorption, structural pores as well as 

Fig. 9—Slump value variations as function of feldspar 
content.

Table 3—Effect of feldspar on SiO2/Al2O3 and CaO/
SiO2 ratios

Mixture ID SiO2/Al2O3 CaO/SiO2

F0 4.48 0.95

F10 5.04 0.78

F20 5.63 0.64

F30 6.25 0.52

F40 6.90 0.42

F50 7.59 0.33

Fig. 10—Compressive strength variations as function of 
feldspar content.

Fig. 11—Live photos during splitting strength measuring.
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capillary pores are directly associated with internal porosity 
volume. A specimen’s surface porosity can be estimated 
by measuring the absorption of water. The porosity of a 
matrix can be detected by measuring the volume of voids. 
With implications for durability and structural performance, 
porosity affects the efficiency of mass transport and matrix 
strength. Figure 13 shows the effect of different ratios of 
feldspar on the water absorption and total porosity of the 
specimens. The specimens free from feldspar (F0) show 
water absorption of 4.9%. This ratio of water absorption is 
acceptable, and is comparable to that reported in Mengasini 
et al.49 (4.1%); higher than that reported in Mithun and Nara-
simhan48 (~3.8%), Huang et al.50 (3.53%), and Rostami and 
Behfarnia51,52 (2.68%); and lower than that reported by Bai 
et al.53 (~7.8%) and Nanayakkara et al.54 (8.6%). Similarly, 
these specimens show a total porosity of 12.92%. The incor-
poration of 10% feldspar has a noteworthy effect on water 
absorption and porosity, of which both were reduced. The 
incorporation of only 10% feldspar decreases water absorp-
tion from 4.9% (from F0) to 4.15% (for F10) and the porosity 
from 12.92% (for F0) to 11.9% (for F10). These reductions 
(improvements) in both water absorption and total porosity 
could be attributed to the packing effect of fine feldspar parti-
cles. These particles are thought to decrease water absorp-
tion and porosity due to their packing effect, which reduces 
capillary pores and prevents water molecules from sticking 

to the samples.22,55 This packing effect can contribute to the 
formation of a dense structure.56 Increasing the proportion 
of feldspar higher than 10% results in an adverse effect on 
the water absorption and porosity, which increase gradually 
with increasing feldspar ratio. The incorporation of 20%, 
30%, 40%, and 50% feldspar ratio led to increasing water 
absorption from 4.15% (for F10) to 5.2% (for F20), 6.25% 
(for F30), 6.9% (for F40), and 7.91% (for F50), respectively. 
In that way, the total porosity of specimens containing 20%, 
30%, 40%, and 50% feldspar show an increase from 12% 
(for F10) to 13.12% (for F20), 14.14% (for F30), 15% (for 
F40), and 16.2% (for F50), respectively. This higher water 
absorption and porosity could be attributed to the porous 
microstructure that excessive ratios of feldspar (silica ratio) 
caused. This excessive ratio can reduce the solubility and 
formation of the gel, resulting in an increase in the number 
of unreacted particles,39,40 and a porous and weak struc-
ture.41,42 The high crystallinity/low amorphization degree 
of specimens containing ratios of feldspar higher than the 
optimum is another reason for the higher water absorption 
and porosity. The increase of incomplete dispersion of exces-
sive feldspar particles than the optimum can lead to higher 
porosity, which is clearly shown in the microstructure. It is 
worth mentioning that Shariati et al.57 found a reduction in 
water absorption of AAS or AAS/SF pastes with increasing 
silica ratio up to a certain level, then an increasing rate with 
increasing this ratio was obtained.

Crystalline phases
Figure 14 shows the XRD patterns of the F0 (the control), 

F10 (the optimum), and F50 (the worst) samples after 
curing for 28 days. The generalized view shows crystal-
line and amorphous phases coexisting. The samples show 

Fig. 12—Splitting tensile strength variations as function of 
feldspar content.

Fig. 13—Water absorption and total porosity variations as 
function of feldspar content.

Fig. 14—XRD patterns of F0, F10, and F50 samples.
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a wide broad hump between 25 and 35 degrees 2θ, which 
is attributed to C-S-H for the F0 sample, and C-S-H and 
N-A-S-H for the F10 and F50 samples. The appearance of 
this hump indicates an amorphous phase. The amorphous 
hump of the F0 sample was slightly increased with the inclu-
sion of 10% feldspar (F10), then decreased with the inclu-
sion of 50% feldspar (F50). This difference in the amorphous 
hump is a part of the explanation for the higher strength of 
F10 over F0 and the lower strength of F50 compared to F0. 
The samples of F10 and F50 show the crystalline phases of 
microcline, calcite, albite, and quartz. The intensity of these 
peaks rapidly increases with increasing feldspar ratio from 
10% (F10) to 50% (F50).

Thermogravimetric analysis
Figures 15, 16, and 17 show the TGA curves of the F0 (the 

control), F10 (the optimum), and F50 (the worst) samples 
after curing for 28 days. The general view of the TGA of the 
F0 sample presented in Fig. 15 shows three weight losses 
corresponding to three TGA endothermic peaks. One of 
them is large and main, while the others are minor. The main 
weight loss can be seen at a temperature lower than 200°C. 
This loss is attributed to dehydration of free water and 
C-S-H gel. There is a minor weight loss at 573°C, which is 
attributed to the decomposition of quartz. The minor weight 

loss between 600 and 800°C is attributed to the decom-
position of calcite. The samples of F10 (Fig. 16) and F50 
(Fig. 17) show similar weight losses at approximately 573°C 
and between 600 and 800°C, while the main weight loss 
before 200°C is attributed to the coexistence of C-S-H and 
N-A-S-H. Comparing the main weight loss (before 200°C) 
for each sample (F0, F10, and F50), it can be observed that 
F10 shows the highest weight loss, which explains its highest 
strength in Fig. 10 and 12 and its lowest water absorption/
total porosity in Fig. 13, while F50 shows the lowest weight 
loss, which explains its lowest strength in Fig. 10 and 12 and 
highest water absorption/porosity in Fig. 13.

Microstructure analysis
Figure 18 shows the SEM images of the F0 (the control), 

F10 (the optimum), and F50 (the worst) samples after curing 
for 28 days. Apparently, the sample free from feldspar (F0) 
shows a somewhat homogenous microstructure with few 
unreacted particles that are identifiable by their angular, 
jagged, and irregular shapes with a bright appearance 
(Fig. 18(a)). This microstructure also shows a limited number 
of pores dispersed between slag particles (Fig. 18(a)), which 
correlated to its reasonable strength. Partially replacing 
slag with only 10% feldspar (F10) results in a denser, more 
compact, and more homogenous microstructure and interfa-
cial transition zone (Fig. 18(b)). The filler and packing effect 
of a suitable ratio of feldspar (10%) can block the pores and 
play an important role in enhancing strength, reducing the 
water absorption, and total porosity. The view of this micro-
structure confirms that a suitable ratio of silica (Table 3) has 
a positive effect on the homogeneity and compactness of 
the microstructure. Partially replacing slag with 50% feld-
spar results in an important change in the microstructure: a 
porous microstructure can be observed with a high number 
and size of pores, featured with their black color (Fig. 18(c)). 
In addition, several unreacted particles and microcracks can 
be observed (Fig. 18(c)) that are responsible for the degra-
dation of strength, the higher water absorption, and the total 
porosity. The view of this microstructure confirms that a 
higher silica ratio than the optimum can produce numerous 
pores41,42 and unreacted particles.39,40

Fig. 15—TGA curves of F0 sample.

Fig. 16—TGA curves of F10 sample.

Fig. 17—TGA curves of F50 sample.
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CONCLUSIONS
This study aims to investigate the possibility of modifying 

the properties of alkali-activated slag (AAS) concrete with 
feldspar. Tests on the effects of different ratios of feldspar 
on the workability, compressive strength, splitting tensile 
strength, water absorption, total porosity, and microstructure 
morphology of AAS concrete were conducted. The main 
outlines of this investigation are listed as follows:

1. It is possible to use a suitable ratio of feldspar to improve 
the fresh and hardened properties of AAS concrete.

2. The incorporation of feldspar increased the work-
ability of the mixtures due to the increasing silica ratio and 
decreasing calcium ratio. The ratio of feldspar in the mixture 
increased as the workability increased. The incorporation of 
10 to 50% feldspar increased the slump by 25 to 125%.

3. The incorporation of 10% feldspar improved and 
enhanced the compressive strength—especially at an early 
age—and the splitting tensile strength due to its filler 
and packing effect, as well as increasing the silica ratio. 
Adversely, a higher ratio of feldspar than 10% decreased 
both the compressive strength and splitting strength. The 
strength reduction increased with increasing feldspar ratio.

4. The inclusion of 10% feldspar decreased water absorp-
tion and total porosity, while a higher ratio than 10% 
increased them. The feldspar ratio increased as water absorp-
tion and total porosity increased.

5. The inclusion of 10% feldspar led to an increase in the 
silica ratio in the mixture, which has a positive effect on 
strength and durability, but a further higher silica ratio than 
required resulted in a higher number of unreacted particles 

and a porous and weak microstructure, as confirmed by 
microstructure analysis.

6. The crystalline phases of microcline, calcite, albite, and 
quartz, as well as C-S-H and N-A-S-H gels, were detected 
when feldspar was added to the samples. The incorporation 
of 10% showed the highest level of the coexistence of C-S-H 
and N-A-S-H gels, and a dense, more compact microstruc-
ture and interfacial transition zone.

This investigation can fill the gap in the literature about 
the effect of feldspar on some properties of AAS concrete. 
It is recommended to investigate the effect of feldspar on 
other properties of AAS concrete such as sulfate resistance, 
chloride resistance, and acid resistance.
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Polyphosphate materials such as sodium tripolyphosphate (STPP) 
and sodium hexametaphosphate (SHMP) are usually used as a 
dispersion agent for the ceramic industry, auxiliary materials in 
high-range water-reducing admixtures, and retarders in traditional 
cement systems. Until now, however, no comprehensive study has 
been performed on the effect of STPP or SHMP on the properties 
of alkali-activated materials (AAMs). Thus, in this paper, the effect 
of different concentrations (2 to 8 wt. %) of STPP and SHMP on 
the properties of alkali-activated slag/fly ash concrete was investi-
gated. The variations in workability, compressive strength, water 
absorption, and total porosity with the incorporation of either STPP 
or SHMP at levels of 2, 4, 6, and 8%, by weight, were conducted. 
Modern techniques were employed to investigate the crystalline 
phases and microstructure morphologies. The primary results 
showed that both STPP and SHMP can increase workability. Each 
type of polyphosphate showed a positive effect on the compres-
sive strength, but 4% was the optimum concentration. Both water 
absorption and total porosity were reduced with the incorporation 
of each type of polyphosphate, but 4% was the optimum. The incor-
poration of a suitable concentration of each type of polyphosphate 
can enhance the dispersion and deagglomeration of the particles 
and refine the microstructure.

Keywords: alkali-activated slag/fly ash concrete; hardened properties; 
microstructure; sodium hexametaphosphate (SHMP); sodium tripolyphos-
phate (STPP); workability.

INTRODUCTION
In construction and civil engineering, concrete is the most 

typically used material due to its ease of configuration and 
implementation, good durability, and versatility. Recently, 
approximately 4.4 billion tonnes of concrete are produced 
annually. The requirement for concrete in different fields is 
increasing at a rapid rate. It is expected that by 2025, approx-
imately 5.5 billion tonnes of concrete will be produced.1 
Portland cement (PC) is still the popular binder material 
for concrete. This has led to an increase in the produc-
tion of cement from 3.31 billion tonnes in 2010 to 4.1 and 
4.4 billion tonnes in 2020 and 2021,2,3 respectively. Cement 
production is accused of releasing huge amounts of toxic 
gases, consuming intensive amounts of fuel and raw mate-
rials. This industry alone emits approximately 8% of global 
CO2 emissions. By 2050, it is expected that direct CO2 
releases from this industry will increase by 4%.4 The cement 
industry is not only accused of emitting a high amount of 
CO2 but also accused of releasing other toxic gases such as 
CO, SO2, and NOx. Unfortunately, this industry furiously 
devours approximately 12 to 15% of global annual energy.5 
It is urgent to find a suitable solution for these problems. 
One scenario to reduce cement consumption is substituting 
a part of cement with supplementary cementitious materials 

(SCMs) such as slag,6 metakaolin,7 and fly ash (FA).8 An 
alternative, more effective scenario for hindering cement 
production is replacing cement with a new binder mate-
rial based on alkali activation. As a result of using alkali- 
activated materials (AAMs) as an alternative to cement, CO2 
emissions, energy, and raw materials consumption can be 
reduced. Materials rich with aluminosilicate such as FA,9 
metakaolin,10 and slag11 are commonly used as precursors 
for AAMs. Using by-product materials such as slag and 
FA in AAMs not only reduces the problems of the cement 
industry but also reduces the industry wastes.12 Starting 
from 1930, with the first use of slag powder activated with 
KOH,13 the development and improvement of these mate-
rials are continuous. One of the most common scenarios to 
improve the properties of AAMs is adding suitable ratios of 
SCMs,12,14 fibers,15-17 nanoparticles,18,19 chemical admix-
tures,20 and so on.

Sodium tripolyphosphate (STPP) and sodium hexameta-
phosphate (SHMP) are two types of polyphosphate. STPP is 
an inorganic compound. It is a sodium salt of the phosphate 
penta-anion. It is a white powder that has a variety of uses. It 
can be used as an additive for food, as a preservative mate-
rial, and as a treated material for animal feed and pet food.21 
Furthermore, STPP can be used in dishwashing and laundry 
detergents, as a tanning leather agent, for metallurgy, petro-
leum refining, water treatment, and mining applications. 
In the construction field, it can be added directly to the dry 
mixture or dissolved into mixing water. It is commonly used 
as a dispersing agent in the processing of ceramics22,23 and 
making refractory castables.24,25 It can be used as an addi-
tive for PC,26-30 magnesium phosphate cement,31,32 and 
gypsum,33 and as an alkalinity source to control the intersti-
tial pH value.22 It can be used as an effective anticorrosive 
pigment for waterborne epoxy coatings34 and an effective 
inhibitor against steel corrosion in concrete.35 SHMP is an 
inorganic compound, which is a white powder or block solid 
or colorless transparent glass flake. It is a very hygroscopic 
material. Similar to STPP, SHMP has a different variety of 
uses. It can be used as an additive for food, textiles, dyeing, 
washing, rinsing, water treatment and papermaking, an 
effective ingredient in toothpaste for tartar prevention, and 
as an anti-staining agent. In the construction field, it can 
be used as a retarding agent for cement,30,36 an additive for 
calcium aluminate cement37,38 and refractory materials,38 a 
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water reducer for MgO/silica fume (SF) systems,39 a modi-
fying agent for the ceramic industry,40 a corrosion inhib-
itor,41 and a deflocculant in clay-based ceramic particles 
production.42,43 It can also be used as a dispersing agent to 
break down clay and other types of soil.44

RESEARCH SIGNIFICANCE
Despite there being numerous uses of STPP and SHMP, 

there is no trial study to investigate the effect of STPP or 
SHMP on the properties of AAMs. Thus, it is useful to know 
the behaviors of AAMs when STPP or SHMP was added. 
Consequently, the properties of alkali-activated slag/FA 
concrete after adding 2 to 8% with a step of 2 wt. % of STPP 
and SHMP were investigated. These properties included 
workability, compressive strength, water absorption, total 
porosity, crystalline phases, and microstructure morpholo-
gies. This investigation can be considered an initial study 
in this field, and more studies are needed to cover the effect 
of STPP and SHMP on the remaining properties of AAMs.

EXPERIMENTAL DETAILS
Materials

The main precursors used in the current investigation 
were slag and FA. The slag was obtained from Helwan Steel 
and Iron Factory in Cairo, Egypt. The obtained slag was 
powdered in a special machine to obtain 300 kg/m2 Blaine 
surface area. Its specific gravity was 2.9. The used FA can 
be classified as Class F according to ASTM C618-08. It 
was obtained from a local company. Its specific gravity and 
Blaine surface area were 2.2 and 400 kg/m2, respectively. The 

chemical composition of both the slag and FA analyzed by 
X-ray fluorescence (XRF) is presented in Table 1. The X-ray 
diffraction (XRD) patterns of the precursors are plotted in 
Fig. 1. The NaOH, sodium silicate, STPP, and SHMP were 
delivered from a chemicals company in Cairo. The NaOH 
pellets with 98% purity were used as a part of the alkali acti-
vator. The properties of the sodium silicate used herein were 
similar to those reported in Rashad and Essa.45 The STPP 
used herein has 0.023% water-insoluble matter, 0.006% Fe, 
89.53% whiteness, 94.21 Na5P3O10, 56.7%  P2O5, 0.57  g/
cm3 density, and 9.8 pH value. The SHMP used herein has 
68% total P2O5, 7.5% inactive P2O5, 0.03% Fe, 0.03% water 
insolubility, 8.6 pH value, 2.48 g/cm3 density, and 90% 
whiteness. Natural sand with a maximum grain size, water 
absorption, and fineness modulus of 4.75 mm, 1.5%, and 
2.75, respectively, was used as a fine aggregate. The natural 
crushed stone has a fineness modulus and water absorption 
of 6.8 and 0.95%, respectively, and was used as a coarse 
aggregate. The prevailing size (more than 90%) of the coarse 
aggregate was 10 mm. Figure 2 shows the optical view of the 
raw materials used herein.

Table 1—Chemical composition of precursors

Oxide, % Slag, % FA, %

SiO2 33 58.12

Al2O3 16 31.90

Fe2O3 1.5 1.74

CaO 37.39 1.32

MgO 6.19 2.20

K2O 0.93 0.42

Na2O 1.84 0.64

SO3 1.86 0.32

MnO 0.53 —

TiO2 0.83 0.67

BaO 0.3 —

SrO 0.14 —

ZrO2 0.07 —

P2O5 0.02 0.33

Cl– 0.18 0.04

Cr2O3 0 —

ZnO 0 —

Loss on ignition 0.51 2.12 Fig. 1—XRD patterns of: (a) slag; and (b) FA.



67ACI Materials Journal/March 2023

Mixture preparation and methods
The control concrete mixture with the target compressive 

strength of 30 MPa free from any addition of STPP or SHMP 
was labeled as C0. An additional eight concrete mixtures 
were prepared by adding either STPP or SHMP at levels 
of 2, 4, 6, and 8% by weight. These mixtures were labeled 
as T2, T4, T6, T8, H2, H4, H6, and H8, respectively. The 
NaOH pellets were added to water and dissolved to prepare 
a solution with a 12 M concentration.46 This solution was 
prepared 1 day before use. The alkaline activator solution 
(40 wt. % of the powders) was made from one part of NaOH 
to 2.5 parts of sodium silicate. A fixed extra water-powders 
ratio of 0.15 was used. The required concentration from 
each type of polyphosphate (that is, STPP or SHMP) was 
dissolved in mixing water. Table 2 briefs the components 
of each concrete mixture. Similar mixtures free from aggre-
gates were prepared for the XRD test.

The mixing sequence was as follows: The solid ingredi-
ents (that is, slag/FA and aggregates) were dry-mixed in a 
drum mixer for 5 minutes. The activator solution and STPP 
or SHMP (if any) premixed with additional water were 
poured into the solid ingredients and mixed for 5 minutes. 
When the homogeneous mixture was reached, the work-
ability was measured according to ASTM C143; simultane-
ously, the molds were filled with fresh concrete and vibrated 
for 1 minute, and leveled and covered with a polypropylene 
sheet to enhance the curing condition by eliminating water 
evaporation. The specimens were demolded after 24 hours 
from casting, then cured at room temperature to simulate 
actual curing.47 Figure 3 shows optical photos during mixing 
conditions. The compressive strength at the ages of 7, 28, 
and 56 days were measured according to BS 1881: Part 
120:1983 using cube specimens with 100 mm long sides. 
The total porosity and water absorption at the same ages 
were measured according to ASTM C642 using 100 mm 
cube specimens. For each test, at least three specimens were 
tested and the average was determined. The selected samples 
were prepared and analyzed for XRD and scanning electron 
microscope (SEM) analyses in a similar way reported in 
Rashad and Essa.45

RESULTS AND DISCUSSION
Workability

Figure 4 shows optical photos during the measurement 
of the slump of the mixtures, while Fig. 5 shows the effect 
of various concentrations of STPP on the slump. As can be 
seen, the slump of the mixtures depends on the concentra-
tion of STPP. The incorporation of STPP in the mixture has 
a positive effect on the workability: the higher the STPP 

Fig. 2—View of starting materials.

Table 2—Concrete mixture proportions, kg/m3

ID Slag FA NaOH (12 M) Sodium silicate Extra water STPP SHMP Fine aggregate Coarse aggregate

C0 240 240 55 137 74 0 0 580 1015

T2 240 240 55 137 74 9.6 0 580 1015

T4 240 240 55 137 74 19.2 0 580 1015

T6 240 240 55 137 74 28.8 0 580 1015

T8 240 240 55 137 74 38.4 0 580 1015

H2 240 240 55 137 74 0 9.6 580 1015

H4 240 240 55 137 74 0 19.2 580 1015

H6 240 240 55 137 74 0 28.8 580 1015

H8 240 240 55 137 74 0 38.4 580 1015
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concentration, the higher the workability of the mixture. 
The inclusion of only 2% STPP in the concrete mixture (T2) 
can increase the slump from 80 mm for the control mixture 
(T0) to 100 mm with a higher ratio of 20%. Increasing STPP 
concentrations to 4, 6, and 8% resulted in an additional 
increase in the slump from 100 mm for T2 to 110, 130, and 

130 mm for T4, T6, and T8, respectively. The incorporation 
of STPP not only has a positive effect on the workability 
herein but also showed a positive effect on the workability 
in other systems. In this regard, Tan et al.48 found higher 
fluidity of cement-montmorillonite paste mixture with the 
incorporation of 0.05 to 0.15% STPP. Ltifi et al.27 confirmed 
higher fluidity of cement paste mixtures during a very short 
period by adding small amounts of STPP. The fluidity results 
obtained by Tan et al.49 revealed that the incorporation of 
0.05 to 0.2% STPP into cement paste mixtures increased 
their fluidity. Li50 confirmed higher fluidity of sulfoaluminate 

Fig. 3—Optical photos during mixing.

Fig. 4—Optical photos during slump measuring.

Fig. 5—Variation of slump with STPP concentration. (Note: 
1 in. = 25.4 mm.)

Fig. 6—Variation of slump with SHMP concentration. (Note: 
1 in. = 25.4 mm.)
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cement/aluminate cement/FA/ultrafine slag mortar mixtures 
with the incorporation of STPP.

Figure 6 shows the effect of various concentrations of 
SHMP on the slump. As can be seen, a similar trend of the 
workability results to those of STPP was observed when 
various concentrations of SHMP were added, but with a 
higher rate. The incorporations of 2%, 4%, 6%, and 8% 
SHMP increase the slump by 25%, 75%, 87.5%, and 87.5%, 
respectively, compared to the control. The incorporation of 
SHMP not only increases the workability herein but also 
increased it in other systems. Cheng et al.38 reported higher 
workability of calcium aluminate cement paste mixtures 
with the incorporation of SHMP up to 0.2%. Wei et al.51 
incorporated 2% SHMP into the MgO/microsilica paste 
mixture aiming to improve its fluidity. Zhang et al.,39 as well 
as Tan et al.,49 found that the addition of 1% SHMP into the 
MgO/SF mixture led to a reduction in water requirement. Bu 
et al.52 confirmed that 2.5% SHMP can be used as an addi-
tive for phosphoaluminate cement to limit fluid loss.

The main feature of Fig. 5 and 6 is increased workability as 
the concentration of STPP or SHMP increased up to 8%. The 
incorporation of SHMP showed higher workability than that 
of STPP. This observation was also previously observed by 
Otroj et al.,53 who found higher flowability of Al2O3-SiC-C 
castable mixtures containing 0.01 to 0.1% SHMP compared 
to those containing the same dosages of STPP. The higher 
workability with the incorporation of these two types of 
polyphosphate (that is, STPP and SHMP) could be related to 
the higher repulsion forces that they caused. These repulsion 
forces can reduce the viscosity and increase workability.53,54

Compressive strength
Figure 7 shows optical photos during measurement of 

the slump of the compressive strength, while Fig. 8 shows 
the development results of compressive strength during the 
ages of 7, 28, and 56 days for concrete specimens containing 
different concentrations of STPP. Exactly as expected, the 
compressive strength was enhanced with a longer hydration 
period. The control specimens (C0) show good compressive 
strength, of which the obtained compressive strength reaches 
25, 28.7, and 33.3 MPa at the ages of 7, 28, and 56 days, 
respectively. The incorporation of STPP has a substantial 
effect on compressive strength. This mainly is contingent 
on its concentration. The incorporation of only 2% STPP 
(T2) can marginally enhance the strength at all ages by an 
average of 5.9%. Increasing STPP concentration to 4% (T4) 
results in an additional strength enhancement, of which the 
strength reaches its highest value with an average enhance-
ment of 38.8%. The incorporations of higher concentrations 
of STPP than 4% do not show additional improvement, but 
a slight degradation in strength was observed. In comparison 
with T4, the incorporations of 6% (T6) and 8% (T8) STPP 
decrease the strength by an average of 10.32% and 17.76%, 
respectively, while they show an average increase of 24.4% 
and 18.34% compared to the control (C0), respectively. The 
incorporation of STPP can not only increase the compressive 
strength of this system used herein but can also increase the 
strength of other systems. Hall et al.31 found higher 24-hour 
and 7- and 28-day flexural strength of magnesia-phosphate 

cement mortars with the incorporation of 25, 35, and 45 g 
of STPP/kg mortar batch. A higher amount of STPP slightly 
decreased it, but it was still higher than the control Pan and 
Wang55 showed: a higher 2-hour compressive strength of 
α-calcium sulfate hemihydrate with adding 0.025% STPP.

Figure 9 shows the effect of various concentrations of 
SHMP on compressive strength development. As can be 
seen, a similar trend of the strength results to those of STPP 

Fig. 7—Optical photos during measurement of compressive 
strength. 

Fig. 8—Variation of compressive strength with STPP 
concentration. (Note: 1 MPa = 145.032 psi.)

Fig. 9—Variation of compressive strength with SHMP 
concentration. (Note: 1 MPa = 145.032 psi.) 
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was observed when various concentrations of SHMP were 
added, but with a lower rate of enhancement. The incorpo-
rations of 2% (H2), 4% (H4), 6% (H6), and 8% (H8) SHMP 
increase the strength at all ages by an average of 2.9%, 
26.77%, 17.82%, and 11.86%, respectively. The incor-
poration of SHMP can not only increase the compressive 
strength of this system used herein but can also increase 
the strength of other systems. The results obtained by Palou 
et al.37 showed a higher 2 to 365-day compressive strength 
of high alumina cement with the incorporation of SHMP and 
calcium hydroxide. Jia et al.56 reported higher compressive 
strength of MgO/SF cement with the incorporation of 2% 
SHMP.

The main features of Fig. 8 and 9 show using STPP or 
SHMP as an additive in alkali-activated slag/FA concrete has 
a positive effect on the compressive strength. The optimum 
ratio was 4%. Higher ratios than 4% (that is, 6 and 8%) did 
not show more strength enhancement compared to that of 
4%, but a slight reduction in strength was obtained. Even 
though the incorporation of 6 and 8% STPP or SHMP 
slightly decreased the compressive strength compared to 
that of 4%, it is still higher than the control. The enhance-
ment in the compressive strength with the inclusion of suit-
able concentrations of each type of polyphosphate (that is, 
STPP or SHMP) could be related to increasing the alkalinity 
of the matrix. Increasing the alkalinity up to a certain level 
has an important effect on the hydration57,58 and mechanical 

strength58-60 of AAMs. The measured pH value of the control 
sample (C0) was 10.95; when 4% STPP was added, this pH 
value was increased to reach 11.25. In such a way, when 4% 
SHMP was added, the pH value of C0 was increased to reach 
11.0. It was reported that a higher pH value led to a higher 
compressive strength of MgO/SF cement.56

In addition, the incorporation of STPP or SHMP has an 
important role in supporting wet-mix compaction, which 
has a positive effect on the compressive strength.31 This 
enhancement also could be related to the stabilization and 
filling effect of SHMP.37 On the other hand, higher concen-
trations of STPP or SHMP than the optimum can somewhat 
increase the degree of heterogeneity (refer to Fig. 16 later) 
and resulted in a reduction in the strength compared with 
that containing the optimum concentration.31 The same trend 
was also observed in other systems. Ltifi et al.26 found an 
enhancement in the 7-day compressive strength of cement 
pastes with the incorporation of 1 and 5 g/L STPP, while 
the incorporation of 50 g/L decreased it. Fan and Chen32 
confirmed an increase in the 1-hour, 3-hour, 1-day, 7-day, 
and 28-day compressive strength of magnesium phosphate 
cement specimens with the incorporation of 0.5 to 2% 
STPP, while the incorporation of 2.5% STPP decreased it 
but was still higher than the control. Finally, as visible from 
comparing Fig. 8 and 9, the compressive strength of STPP 
specimens is somewhat higher than that of SHMP speci-
mens. This could be related to the higher pH value of STPP 
(9.8) compared to that of SHMP (8.6). The higher pH value 
can dissolve the precursor and produce higher strength.61,62

Water absorption and total porosity
A matrix’s ability to absorb water is one of the most 

important indicators of its durability, as well as the formed 
cracks caused by shrinkage. Water absorption is directly 
proportional to structural pores, capillary pores, and volume 
of internal porosity. Estimation of surface porosity can be 
made by measuring water absorption.63 The volume of voids 
in the matrix is an indication of its porosity. It affects the 
matrix strength, mass transport process, and can be used as 
an indicator of its performance and durability. Figures 10 
through 13 show the variation of water absorption and total 
porosity at different ages with the incorporation of different 

Fig. 10—Variation of water absorption with STPP 
concentration.

Fig. 11—Variation of total porosity with STPP concentration.
Fig. 12—Variation of water absorption with SHMP 
concentration.
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concentrations of STPP and SHMP. The general view of the 
results confirms the remarkable effect of each type of poly-
phosphate as well as hydration time on both water absorp-
tion and total porosity. The control specimens show the 
highest water absorption and porosity. At the age of 7 days, 
the control specimens show 6.1% water absorption. This 
ratio was reduced with increasing hydration time, due to the 
improvement of pore structure,64 to reach 5.5% and 4.91% at 
the ages of 28 and 56 days, respectively. The obtained results 
at the age of 28 days herein are higher than those of alkali- 
activated slag concrete reported in References 65 through 
68, lower than those reported in References 69 through 72, 
and comparable to those reported in Reference 73. Similarly, 
the specimens free from any type of polyphosphate show 
the highest total porosity of 13.7%, 12.4%, and 11.5% at the 
ages of 7, 28, and 56 days, respectively. The obtained results 
are acceptable: the porosity at the age of 28 days is higher 
than what was reported in References 47, 65, and 67 and 
lower than what was reported in References 74 and 75.

The incorporation of STPP has a remarkable effect on 
water absorption and porosity (Fig. 10 and 11). This mainly 
depends on its concentration. The incorporation of only 2% 
STPP (T2) can marginally reduce water porosity at all ages 
by an average of 3.83%. Increasing STPP concentration to 
4% (T4) results in an additional water absorption reduc-
tion, which accounts for an average of 17.65% lower than 
the control. The incorporations of higher concentrations 
of STPP than 4% do not show additional reduction, but a 
slight increase in water absorption was observed (Fig. 10). 
Compared to T4, the inclusions of 6% (T6) and 8% (T8) 
STPP increase water absorption by an average of 12.9% and 
15.23%, respectively. Compared to C0, the inclusions of 
6% (T6) and 8% (T8) STPP reduce water absorption by an 
average of 7.1% and 5.1%, respectively. Similarly, the inclu-
sion of 2% (T2), 4% (T4), 6% (T6), and 8% (T8) STPP can 
reduce the total porosity from an average of 12.33% to an 
average of 11.72%, 10%, 11.4%, and 11.55%, respectively 
(Fig. 11).

Figures 12 and 13 show the effect of various concen-
trations of SHMP on water absorption and total porosity 
development. As can be noted, these results show a similar 
trend to those obtained with the inclusion of STPP but with 

a slightly higher rate. The incorporations of 2% (H2), 4% 
(H4), 6% (H6), and 8% (H8) SHMP reduce water absorption 
by an average of 2.27%, 13.5%, 4.9%, and 3.42%, respec-
tively, while the obtained total porosity was 12.3%, 10.57%, 
11.93%, and 12.1%, respectively. The main features of 
Fig. 10 through 13 are using STPP or SHMP as an additive 
in alkali-activated slag/FA concrete has a positive effect on 
reducing water absorption and total porosity. The optimum 
ratio was 4%. This reduction could be attributed to the 
increased repulsive force between powder particles caused 
by each type of polyphosphate. This force can enhance the 
dispersion38,56,76 and deagglomeration77 of the particles, 
producing a refined microstructure (refer to Fig. 16 later). 
In addition, each type of polyphosphate has a deflocculating 
characteristic. It was reported that deflocculating character-
istics can improve the wet-mix compaction, which led to 
lower porosity of the hardened matrix.78

Crystalline phases
Figure 14 shows the XRD patterns of the control sample 

(C0) as well as those containing 4% STPP (T4) and 8% 
STPP (T8) after hydration for 28 days. The sample of C0 
shows the existence of a diffusive hump, which is attributed 
to the amorphous gels in both raw precursors and hydration 
products. This hump is centered between 25 and 35 degrees 
2θ. The coexistence of semi-crystalline phases of C-(A)-S-H 
and N-A-S-H can be detected. This detection is consistent 
with what was previously described by Aboulayt et al.,79 
who reported that replacing slag with 20 to 40% FA in an 
alkali-activated slag/FA system resulted in a predominate 
C-A-S-H phase concerted with N-A-S-H. The mineralog-
ical characterization of this sample (C0) shows the domi-
nant peaks of quartz, which is an indication that quartz in 
the starting material did not participate in the reaction.80 
The crystalline peaks of mullite and hematite also can be 
detected.81 As observed, there is no remarkable change in 
the different phases for T4 and T8 samples compared to C0. 

Fig. 13—Variation of total porosity with SHMP 
concentration.

Fig. 14—XRD patterns for C0, T4, and T8 samples.
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Similar peak identifications can be observed for the samples 
containing 4% SHMP (H4) and 8% SHMP (T8) (Fig. 15).

Microstructure analysis
Figure 16 shows the SEM images of the reference sample 

(C0) as well as samples containing different concentrations 
of STPP (T4, T8) and SHMP (H4, H8) after hydration for 
28 days. As is clear from Fig. 16(a), the C0 sample shows 
some unreacted FA particles that can be identified by their 
spherical shape as well as slag particles that can be identified 
by their irregular, jagged, and angular shapes with light gray 
color. This image shows a somewhat heterogeneous micro-
structure with a small number of pores. The incorporation of 
4% STPP or 4% SHMP has a remarkable effect on the micro-
structure of the sample (Fig. 16(b) and (c)): the microstruc-
ture of each sample seems to be relatively dense and more 
homogenous compared to the control (C0). The dispersion 
stability was increased due to increasing electrostatic repul-
sion between particles.38,76 These features are in agreement 
with the results of enhanced compressive strength, reduced 
water absorption, and reduced total porosity. In another 

Fig. 15—XRD patterns for C0, H4, and H8 samples.

Fig. 16—SEM images of: (a) C0; (b) T4; (c) H4; (d) T8; and (e) H8.
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system, Song et al.76 reported that the incorporation of SHMP 
into gas-sealing coating filler resulted in a homogenous and 
dense microstructure. Increasing the concentration of STPP 
or SHMP to 8% results in an increase in the heterogeneity 
degree (Fig. 9(d) and (e)). This increase in heterogeneity or 
decreased homogeneity is the main reason for variation in 
the compressive strength. In another system, Hall et al.31 
reported that the incorporation of lower or higher ratios of 
STPP in magnesium phosphate cement than the optimum 
resulted in an increase in the heterogeneity degree.

CONCLUSIONS
In this paper, the possibility of improving some properties 

of alkali-activated slag/fly ash (FA) concrete by incorpo-
rating different concentrations of different types of polyphos-
phate named sodium tripolyphosphate (STPP) and sodium 
hexametaphosphate (SHMP) was studied. The effects of 
different concentrations of STPP and SHMP on workability, 
compressive strength, water absorption, total porosity, and 
microstructure morphology were investigated. The main 
conclusions extracted from this study are listed as follows:

1. The incorporation of STPP and SHMP increased 
workability.

2. The compressive strength at all ages was enhanced with 
the incorporation of STPP or SHMP due to the increase in 
the alkalinity as well as the stabilization and filling effect of 
STPP and SHMP.

3. The concentration of 4% from STPP or SHMP exhib-
ited the highest strength. Increasing the concentrations over 
4% did not show additional improvement in the strength, but 
a slight reduction was observed.

4. The incorporation of STPP or SHMP in the matrix 
showed a positive effect in reducing water absorption and 
total porosity, of which 4% showed the highest reduction. 
This positive effect is attributed to enhancing the dispersion 
and deagglomeration of the particles and refining the micro-
structure. In addition, the deflocculating characteristics of 
each type of polyphosphate can improve the wet-mix compac-
tion, which led to lower porosity of the hardened matrix.

5. The incorporation of 4% STPP or SHMP in the matrix 
resulted in a relatively dense and more homogenous micro-
structure compared to the control, of which the dispersion 
stability was increased due to increasing electrostatic repul-
sion between particles.

6. This study can be considered as an initial or a prelimi-
nary study, and more studies are required.
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Corrosion of reinforcing steel increases the probability of the 
fracturing of longitudinal reinforcing bars and leads to the loss 
of load-carrying capacity in reinforced concrete (RC) members. 
Twenty-four reinforcing steel bars were subjected to the buckled 
bar tension (BBT) test, and the critical bending strain was obtained 
at different corrosion levels. The specimens were passivated rein-
forcing steel bars that were corroded through accelerated electro-
lytic corrosion. The results show that the critical bending strain 
decreases as the corrosion level increases. The critical bending 
strain influences the post-buckling bar fracture limit state and 
reduces the displacement capacity of columns as the corrosion 
level in the longitudinal reinforcing bar increases. In addition, the 
degradation of yield strength, ultimate strength, and uniform axial 
elongation for corroded reinforcing steel bars were observed.

Keywords: buckled bar tension (BBT); buckling; corrosion; fractures; ulti-
mate limit state.

INTRODUCTION
Reinforcing steel corrosion is one of the principal causes 

of the deterioration of reinforced concrete (RC) structures. 
The corrosion of reinforcing steel affects serviceability 
and structural safety by decreasing the load-bearing and 
displacement capacities of RC members due to the loss of 
bar section and bond between reinforcing steel and concrete.

Prior research has shown the structural degradation of 
corroded RC columns subjected to cyclic quasi-static tests.1-3 
For example, Meda et al.1 showed that a column with longi-
tudinal steel exhibiting a mass loss or corrosion level (CL) 
of 20% had a strength reduction of 33%, while the maximum 
displacement capacity decreased by 50% compared to a 
control specimen in pristine conditions.

Past studies on the material properties of corroded rein-
forcing steel bars have shown that the reinforcing steel 
bars’ effective yield strength and elongation decrease with 
increasing levels of corrosion.4-6 These studies have been 
conducted on bars subjected to accelerated electrolytic 
corrosion and have reported equations that correlate the 
yield strength, ultimate strength, and uniform elongation to 
the level of corrosion. However, these studies have used high 
current densities, and in other studies, the bar was not passiv-
ated.1,3 In addition, the presence of a passive layer affects the 
corrosion morphology at the bar’s surface, which translates 
into characteristics of produced flows, affecting fracture 
growth and propagation. Recent advances in studying the 
cyclic behavior of structures have led to the development 
of the buckled bar tension (BBT) test.7 The BBT test has 
been used to assess the embrittlement of reinforcing bars 
due to changes in the chemical composition, manufacturing 

process, and rib radii of reinforcing steel bars.7 The embrit-
tlement was measured through the critical bending, which 
has been shown to correlate well with the onset of bar frac-
ture in RC columns subjected to cyclic loading.8

Corrosion directly affects the geometry of the longitu-
dinal steel bars and the effective mechanical properties of 
corroded reinforcing steel bars, such as yield strength, ulti-
mate strength, uniform axial elongation, and critical bending 
strain. Therefore, it is hypothesized that corrosion results 
in the formation of surface flows that penetrate the rein-
forcing bar; these flows act as initial fractures, resulting in 
an increased stress concentration. During cyclic loading in 
BBT, the fracture can propagate and reduce the ductility of 
the reinforcing bar.

In this study, passivated specimens using a pore solu-
tion were prepared to levels of corrosion ranging from 5 to 
20%. Then, three-dimensional (3-D) scanning was used to 
precisely measure the corrosion level. Next, the specimens 
were subjected to tension and BBT tests. In addition, scan-
ning electron microscope (SEM) observations were used to 
detect if chlorides were present at the microstructural level 
on the fracture surfaces and to study the morphology of 
the fracture surface. Finally, turned-down specimens from 
corroded reinforcing bars were prepared to prove that the 
observed degradation did not change the material itself but 
was caused by the geometrical imperfections produced by 
the corrosion process.

RESEARCH SIGNIFICANCE
The material tests described in this paper confirm that 

the critical bending strain of reinforcing bars decreases as 
the corrosion level of the reinforcing steel increases. The 
bending strain has implications for the definition of perfor-
mance limit states for columns containing corroded rein-
forcement and is the first step toward quantifying those 
limits.

EXPERIMENTAL PROGRAM
The experimental program evaluated the behavior of 

buckled reinforcing steel bars at corrosion levels from 5 to 
20%. The CL is defined as the mass loss due to corrosion 
divided by the initial mass of the specimen. A total of 24 BBT 
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tests and nine tension tests were conducted on ASTM A706 
Grade 80, 20 mm (0.75 in.) diameter reinforcing steel bars. 
First, the specimens were corroded through an electrochem-
ical process explained as follows. A summary of the testing 
matrix is provided in Table 1. In addition, 3-D scanning was 
used to capture the volumetric imperfections on the surface 
of the corroded reinforcing steel bars to identify the equiv-
alent diameter and compare it with the expected diameter 
for a uniformly corroded reinforcing steel bar. Finally, SEM 
observations of six fracture surfaces were performed to study 
the fractography to determine if chlorides had penetrated the 
fracture surface at the microstructural level.

Test specimen geometry
The specimens consisted of reinforcing steel bars 432 mm 

(17 in.) in length. A total gauge length of 178 mm (7 in.) 
was provided, as shown in Fig. 1. The ends of the specimens 
were protected against corrosion with three layers. The first 
layer consisted of two-part epoxy, the second layer consisted 
of electroplating tape, and the third layer consisted of shrink 
tubing.9 These layers ensured that no corrosion occurred 
in the grip areas of the reinforcing steel bars, as shown in 
Fig. 2.

Corrosion methodology
In this study, before subjecting the specimens to corrosion, 

the reinforcing steel bars were allowed to develop a passive 
layer by submerging them in synthetic concrete pore solution 
following Ghods et al.10 The pore solution included other 
salts that are present in the cement matrix, such as calcium, 
sodium, potassium, and sulfate oxide. The pore solution 
was generated with the following concentrations10: 4 g/L 
saturated calcium hydroxide (Ca(OH)2), sodium hydroxide 
(Na(OH)), 11.22 g/L potassium hydroxide (KOH), and 
13.77  g/L of calcium sulfate dihydrate (CaSO4 + 2H2O). 
The specimens were submerged in synthetic pore solution 
for 8  days to allow the development of the passive layer 
following the findings by Ghods et al.10 on the minimum 
required duration for the formation of a stable passive 
layer. During the exposure, the synthetic pore solution was 
protected against exposure to air to avoid carbonation of the 
pore solution.

The accelerated corrosion process of the reinforcing steel 
bars started after generating the passive layer. Then, the 
accelerated corrosion was performed through an electro-
chemical process. In the electrochemical process, the anode 
consisted of the reinforcing bar, the cathode consisted of 
the stainless steel mesh, the electrolytic solution of 0.3 M 
of NaCl solution was added to the pore solution, and an 
impressed electric current of 0.15 A was used. The setup 
used to accelerate corrosion is shown in Fig. 3.

Faraday’s law was used to estimate the time required to 
achieve the intended corrosion level in terms of mass loss. 
Faraday’s law is shown in Eq. (1), where Δmloss corresponds 
to the mass loss; I is the current in amperes (I = 150 mA); 
t is the time the current is sustained in seconds; and AM is 
the atomic mass of the oxidizing component. The oxidizing 
component was the iron (Fe) in the reinforcing steel bars. 
Hence, AM = 54.845 g/mol, where n is the number of elec-
trons lost per atom oxidized (the number of electrons for iron 
[Fe] is 2), and F is Faraday’s number; F = 96,485 C. Solving 
Eq. (1) for t and assuming uniform corrosion, the time to 
corrosion was calculated.

	 �m
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The resulting corroded reinforcing steel bars for all the 
corrosion levels are shown in Fig. 4.

Corrosion-level measurement
The corrosion on the specimens was uniform throughout 

the gauge length. After the specimens had been subjected to 
the depassivation process, the specimens were cleaned from 
the corrosion using hydrochloric acid (HCl). The corrosion 
level was calculated as the ratio of mass loss to initial mass 
in the gauge length, expressed as follows
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where m0 is the weight of reinforcement prior to corrosion; 
and mf is the weight of the same reinforcement after it was 

Table 1—Testing matrix for 20 mm (0.75 in.) at 
different corrosion levels

Corrosion level, % Number of tension tests Number of BBT tests

5 3 6

10 3 6

15 0 6

20 3 6

Fig. 1—Specimen geometry, gauge length, and grip area.

Fig. 2—Grip protective layers.
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corroded and cleaned in the acid solution. The corrosion on 
the specimens was uniform throughout the gauge length. 
Therefore, each specimen was weighed before and after the 
accelerated electrolytic corrosion. The corrosion level was 
calculated as the ratio of mass loss to initial mass in the 
gauge length, as expressed in the following sections.

Measurement of corrosion level using  
3-D scanning

The corroded reinforcing steel bars were scanned using 
a coordinate-measuring machine.11 The 3-D scans were 
performed along the gauge length with a resolution of 
0.024 mm (0.001 in.). A sample of the 3-D scans is shown 
in Fig. 5. From the 3-D scans, the volume (V) of the gauge 
length with the imperfection induced by the corrosion was 

measured. The effective diameter was calculated, assuming 
a uniform cylinder, expressed as

	 d V

L
eff

o

�
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With the effective diameter, the level of corrosion was 
calculated as
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Tension tests
The objective of the tension tests was to observe if there 

were changes in the correlation between effective yield 
strength and corrosion for ASTM A706 Grade 80 steel. 
The procedure to perform the tension tests corresponds to 
ASTM A370. The strains were captured using light-emitting 

Fig. 3—Specimen accelerated electrolytic corrosion setup.

Fig. 4—Sample of resulting corroded reinforcing bars.

Fig. 5—3-D scanning of reinforcing steel bar imperfections.
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diode (LED) markers from a dynamic measuring machine.12 
The gauge length between the LED markers was 51 mm 
(2 in.), as specified in ASTM A370. Figure 6 shows the test 
setup. The stress was calculated based on the load reading 
from the universal testing machine (UTM) and divided by 
the measured area of the corroded reinforcing steel bars.

BBT tests
The BBT test was used to characterize the change in the 

critical bending strain of corroded reinforcing steel bars. The 

BBT tests consisted of placing a reinforcing steel bar in a 
UTM; then, the surface of the reinforcing steel bar specimen 
was instrumented with LED markers, such that the displaced 
shape of the bar could be measured. Then, the reinforcing 
steel bar specimen was compressed to impose a bending 
strain of a prescribed level. The prescribed level of strain 
was calculated using the Barcley and Kowalsky7 model 
shown as follows
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Once buckled to the prescribed curvature, the reinforcing 
steel bar is loaded in tension until the fracture is observed. 
This procedure was repeated at different bending strains. 
The procedure thus described is shown in Fig. 7.

A fourth-order polynomial was fitted to the LED sensors 
near the buckled region of the bar to obtain the displaced 
shape (w). Then, the bending strain was calculated per 
Eq. (6).
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After all the tests were performed, results from elongation 
at peak force were generated, as shown in Fig. 8. The level 
of bending strain demand was controlled by monitoring the 
bar curvature during testing using the calculations described 
previously. The corroded reinforcing bars were subjected to 
different bending strain demands from buckling and then 
pulled to fracture. Two failure modes were observed in the 
BBT test: 1) ductile failure mode, in which the specimen 
experienced uniform axial elongation similar to a uniaxial 
tensile test and exhibited necking prior to fracture, as shown 
in Fig. 9(a); and 2) brittle failure mode occurred when the 
uniform axial elongation was a negative value or lower than 
the typical results of a uniaxial tensile test, and the failure Fig. 6—Tension test setup on corroded reinforcing steel bar.

Fig. 7—Corroded reinforcing steel bar specimen loaded in BBT test setup.
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surface was flat, as shown in Fig. 9(b). The critical bending 
strain (εb) is the strain from bending that results in a transi-
tion from ductile to brittle fracture.

Tension test and BBT tests on turned-down 
reinforcing steel bars

Nine corroded specimens of up to a level of corro-
sion of 20% were turned down in a lathe to remove the 

imperfections induced by the corrosion and any corroded 
material. The turned-down reinforcing bars are shown in 
Fig. 10. The objectives of these tests were to prove that the 
observed degradation did not change the material itself but 
was caused by the geometrical imperfections produced by 
the corrosion process.

SEM analysis of fracture surface
Six fracture surfaces were observed under the vari-

able-pressure scanning electron microscope (VPSEM) to 
observe the fracture surface of the BBT tests. The informa-
tion obtained from the VPSEM images was used to deter-
mine the effect of corrosion on the fracture surface. In addi-
tion, the backscattered electron observations allowed for a 
chemical analysis of the fracture surface, which allowed the 
identification of corrosion products on the fracture surface.

Fig. 8—Processing of data from BBT tests.

Fig. 9—Types of fractures in BBT tests of corroded reinforcing steel bars.

Fig. 10—Turned-down bar sample.
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EXPERIMENTAL RESULTS AND DISCUSSION
Measured corrosion level in specimens

The level of corrosion was measured through the mass 
loss method and the 3-D scans. The results from both  
methodologies show that the target corrosion level was 
achieved within a margin of 1% of the expected corrosion 
level, as shown in Table 2. In addition, the 3-D scan effective 
diameter was used in the subsequent sections to calculate the 
stresses and strains.

Effective mechanical properties of corroded 
reinforcing steel bar

The results of corroded reinforcing bar specimens 
subjected to tension tests were statistically analyzed 
through linear regression. The results show a reduction in 
the corroded reinforcing steel bars’ strength and deforma-
tion capacity as the corrosion level increases, as seen in 
Fig. 11. The yield strength is plotted at each corrosion level, 
and a linear trend between the effective yield strength can 
be observed, as shown in Fig. 12. The relationship between 
the effective yield strength and the corrosion level can be 
expressed as follows

	 fye,CL = fy,o(1 – 0.0075CL)	 (7)

Equation (7) was found through regression analysis of 
the experimental results. Similarly, the ultimate strength 
degradation was analyzed based on the level of corrosion. 
The degradation of the ultimate strength was also linear as a 
function of the corrosion level, as shown in Fig. 13. There-
fore, the ultimate strength degradation with the corrosion 
level can be expressed as

	 fue,CL = fu,o(1 – 0.0075CL)	 (8)

Likewise, the degradation in the uniform elongation as a 
function of the corrosion level was linear up to a level of 
corrosion of 10%, as seen in Fig. 14. However, the uniform 
elongation remained constant at corrosion levels between 10 

Table 2—Accelerated corrosion calculated and 
measured corrosion level

Target 
corrosion 
level, %

Number of 
specimens

Current 
density, 
μA/cm2

Exposure 
time, days

3-D 
scans, %

Mass 
loss, %

5 9 370 16 5.1 4.6

10 9 370 31 10.3 9.4

15 6 370 47 15.1 14.9

20 9 370 63 20.5 19.1

Fig. 11—Tension test results at different corrosion levels.

Fig. 12—Yield strength degradation versus corrosion level.

Fig. 13—Ultimate strength degradation versus corrosion 
level.

Fig. 14—Uniform elongation degradation versus corrosion 
level.
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and 20%. The relationship can be expressed in the following 
equations

	 εue,CL = εo – 0.05CL for 0% ≤ CL ≤ 10%	 (9)

	 εue,CL = εo – 0.05 for 10% < CL	 (10)

The uniform elongation, yield, and ultimate strength 
differ from the Du et al. model.6 These differences might be 
caused by microstructural differences on the surface of the 
reinforcing bars when the passive layer was generated. Past 
research has shown that the passive layer changes the micro-
structure of the surface of reinforcing steel.10

Critical bending strain and corrosion level 
relationship

The corroded reinforcing bar specimens subjected to BBT 
tests were analyzed based on the critical bending strain 
parameter. The critical bending strain was evaluated at corro-
sion levels between 0 and 20%. The results from the 24 BBT 
tests are shown in Fig. 15, which shows that as the corrosion 
level increases, the critical bending strain decreases. Plotting 
the critical bending strain against the level of corrosion in 
Fig. 16, the degradation between the critical bending strain 
as a function of the corrosion level becomes more evident. It 
can be seen that the critical bending strain reduces linearly 
with an increasing level of corrosion and can be expressed as

	 εbe,CL = εb,o – 0.0045CL	 (11)

It is important to note that Eq. (7) to (11) are applicable 
only to the tests described in this paper and are provided 
to illustrate the trends. They should not be applied to other 

Fig. 15—Determining maximum bending strain for corrosion levels of 0 to 20%.

Fig. 16—Maximum bending strain degradation versus 
corrosion level.

Fig. 17—Tension tests results for turned-down corroded 
specimens.
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bar diameters without additional verification. However, 
perhaps most impactful is the observation that the crit-
ical bending strain is impacted by corrosion because this 
directly correlates to a bar’s fracture strain. In the following 
sections, it will be shown that the effect of corrosion is tied 
to the geometric imperfections that result from corrosion, as 
opposed to mechanical changes to the constitutive response.

Results from turned-down corroded reinforcing 
steel bars

The tension and BBT tests show that the virgin material 
in the corroded reinforcing steel bars remains unchanged, 
as shown in Fig. 17 and 18. In Fig. 17, the yield and ulti-
mate strengths of turned-down specimens remain unchanged 
compared to reinforcing steel bars in pristine conditions. 
Similarly, in Fig. 18, the BBT test results are compared 
to pristine-condition reinforcing steel bars with the ribs 
removed from the study by Barcley and Kowalsky.7 Again, 

it can be observed that the results match well. Therefore, it 
can be concluded that corrosion induces geometrical imper-
fections along the reinforcing steel bar surfaces, which then 
reduces the performance of the corroded reinforcing steel 
bars. However, the intrinsic material properties in the core 
of the material do not change.

SEM analysis of fracture surface
Six fracture surfaces from the BBT tests were observed 

with the SEM. In Fig. 19, the images for a brittle fracture and 
a ductile fracture sample are shown. Brittle fractures had flat 
fracture surfaces (Fig. 19(a)), and the ductile fracture had 
dimple features (Fig. 19(b)), typical of each fracture type. 
These observations indicated no changes to the microstruc-
tural composition of the material due to corrosion.

In addition, to rule out the presence of chlorides in the 
fracture surfaces, energy-dispersive spectroscopy (EDS) 
spectrum analysis was performed. The EDS analysis allowed 

Fig. 18—Maximum bending strain for turned-down corroded specimens.

Fig. 19—SEM observations of brittle and ductile fractures.
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the authors to identify which elements were present in the 
fracture surfaces. As Fig. 20 shows, the EDS analysis results 
showed no chlorides on the fracture surfaces of brittle and 
ductile specimens. Thus, it is evident that premature frac-
tures are an effect of the geometrical imperfections on the 
surface of the specimens due to corrosion.

FUTURE RESEARCH
Based on the research outcomes described in this paper, 

additional studies are required to evaluate the impact of 
corrosion level on the performance of RC columns with 
corrosion in the longitudinal steel subjected to cyclic 
loading. These tests would confirm the correlation between 
displacement capacity and critical bending strain of corroded 
RC columns. In addition, the evaluation of critical bending 
strains for corroded reinforcing bars of varying diameters 
and grades should also be conducted.

CONCLUSIONS
The authors considered corroded reinforcing steel spec-

imens using a low-density current and a pore solution that 
emulated the conditions of bars present in the portland 
cement matrix. The tension tests performed determined the 
effective mechanical properties defined as a function of the 
pristine material properties and the corrosion level.

In addition, the critical bending strain degradation due 
to corrosion was determined as a function of the corrosion 
level. Similar to the effective mechanical properties, the crit-
ical bending strain decreases as the corrosion level increases.

The results from the turned-down reinforcing bars showed 
no changes in the intrinsic material properties of the rein-
forcing steel bars. These results indicate that the observed 
effect of corrosion on the effective mechanical properties of 
corroded reinforcing steel is related to the changes in the 
morphology of the surface of corroded reinforcing bars and 
the presence of flaws caused by corrosion. Finally, scan-
ning electron microscope (SEM) observations determined 
that the microstructural composition of the virgin material 
remains unchanged.

The authors envision that using the critical bending strain 
and the effective mechanical properties (yield strength, 
ultimate strength, and uniform elongation) will define the 
material properties and limit states of corroded reinforced 
concrete (RC) members for the performance-based design 
of aging structures.
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NOTATION
AM	 =	 atomic number
CL	 =	 corrosion level
CLM	 =	 corrosion level, mass loss method
CL3-D 	=	 corrosion level, 3-D scanning method
deff	 =	 effective diameter
d0	 =	 initial diameter
F	 =	 Faraday’s number
fu,o	 =	 initial ultimate strength
fue,CL	 =	 effective ultimate strength at corrosion level
fy,o	 =	 initial yield strength
fye,CL	 =	 effective yield strength at corrosion level

Fig. 20—EDS spectrum analysis of SEM observations shows no chlorides on fracture surface.
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I	 =	 current in amperes
L0	 =	 gauge length
mf	 =	 final mass after corrosion
m0	 =	 initial mass
n	 =	 electron numbers
t	 =	 time to obtain mass loss in Faraday’s equation
V	 =	 volume in gauge length obtained from 3-D scans
w	 =	 displaced shape of reinforcing steel bar
Δaxial	 =	 axial displacement of universal testing machine
Δmloss	 =	 mass loss
εb	 =	 prescribed bending strain
εb,o	 =	 pristine condition bending strain
εbe,CL	 =	 effective bending strain at corrosion level
εo	 =	 uniform axial elongation in pristine condition
εue,CL	 =	 effective uniform axial elongation at corrosion level
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This paper presents a set of procedures and a recently developed 
direct tension test for determining the uniaxial tensile strength 
and full stress-strain behavior of ultra-high-performance concrete 
(UHPC). The proposed set of procedures aim to establish an 
upper and lower bound for the tensile strength based on prefer-
ential casting orientation. Results from this research show that 
an upper and lower bound of strength could be established when 
properly executed casting procedures are in place. On the other 
hand, the proposed direct tension test can capture the full stress-
strain behavior of the material at pre- and post-cracking stages, 
for both strain-hardening and strain-softening samples. Results 
from the direct tension tests performed during this research favor 
the use of contactless extensometers to avoid stress concentrations 
that induce early localization at the regions close to the attachment 
points when using traditional measuring methods.

Keywords: casting orientation; direct tension test; ultra-high-performance 
concrete (UHPC).

INTRODUCTION
In structural engineering, the design of new structures and 

the evaluation of existing ones requires knowledge of the 
behavior and mechanical properties of the materials used 
for construction. Ultra-high-performance concrete (UHPC) 
is a relatively novel concrete material with enhanced 
tensile strength, offering considerable advantages that are 
appealing to the precast industry. Nevertheless, this mate-
rial presents some challenges for determining its uniaxial 
tensile strength and obtaining meaningful stress-strain 
information from tensile tests that could be used reliably 
for structural modeling of UHPC elements. A direct tension 
test (DTT) is the straightforward solution to the aforemen-
tioned challenges. Accordingly, the test should be capable 
of capturing the full stress-strain behavior in tension of the 
material while exhibiting a reasonable coefficient of varia-
tion within a sample set of tests. Additionally, the tensile test 
should be relatively easy to implement at in-house quality 
control (QC) labs, using either existing equipment or with a 
minimum investment for the acquisition of new equipment. 
The importance of developing a reliable tensile test resides 
in the fact that most current tensile tests for concrete mate-
rials are inherently indirect in nature, with high intra-test 
variability and/or the inability to capture the full stress-strain 
behavior of the material.

In recent years, the development of a DTT for UHPC 
(Graybeal and Baby1,2) represents a great advance toward 
the standardization of a reliable tensile test for the material. 
The DTT has been the result of more than 5 years of study 
and development at the Federal Highway Administration 

(FHWA) Laboratories. In the DTT, a prismatic 50 x 50 x 
430 mm (2 x 2 x 17 in.) specimen is loaded in tension in a 
displacement-controlled universal testing machine (UTM). 
The load is transferred by gripping the specimens at their 
ends through epoxied aluminum plates located at both 
sides of the test sample. The deformation of the specimen 
is measured by four linear variable differential transducers 
(LVDT), each located at one of the four faces of the spec-
imen, and the average of these measurements represents the 
true deformation in a gauge length set to 100 mm (4 in.) (refer 
to Fig. 1). Because the load and deformation are recorded 
simultaneously until failure, the full strain-stress behavior of 
the material is obtained accordingly. The latter is of upmost 
importance for the specialized modeling techniques required 
for UHPC structures.

Another issue of great importance for the determination 
of the tensile properties of UHPC is the effect of cast/fiber 
orientation in the strength and ductility in tension of the 
material. A study by Maya Duque and Graybeal3 tackling 
this issue demonstrated a remarkable reduction of strength 
and ductility before localization for samples extracted 
at a 90-degree angle from the direction of the cast flow. 
In contrast, samples that were extracted along the casting 
direction (at 0 degrees) and those that were mold-cast with 
induced flow in the longitudinal direction exhibited greater 
strength values and ductility.

Building on the well-grounded knowledge provided by the 
FHWA test, the authors propose a new DTT targeting areas 
identified as having room for improvement from the current 
FHWA test—among them, the challenges with specimen 
preparation, alignment, instrumentation, and the possible 
introduction of significant tensile strains at gripping.2 Addi-
tionally, a set of procedures is presented to address the issue 
of the influence of cast/fiber orientation on the outcome of 
the DTTs and establish an upper and lower bound of strength 
using these casting procedures.

RESEARCH SIGNIFICANCE
The work presented herein introduces a new test method 

for determining the direct tensile properties of UHPC. 
The recently developed DTT represents an alternative to 
dog-bone and the FHWA DTTs. The test can be performed 
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with standard laboratory equipment used for the testing 
of metals and circumvents some of the hurdles existing in 
other tensile tests related to variable geometry, end boundary 
conditions, attachment methods, and required specimen 
preparation. Additionally, a casting procedure is proposed to 
obtain characteristic upper and lower values of strength in 
UHPC mixtures. An investigation on the direct tension prop-
erties of a nonproprietary mixture showcases the proposed 
test method.

EXPERIMENTAL PROCEDURE
Materials

A nonproprietary UHPC mixture was developed for the 
purpose of this investigation. The mixture is a metakaolin- 
limestone formulation with a 28-day average 50 mm (2 in.) 
cube compressive strength of 138 MPa (20 ksi) and splitting 
tensile strength of 16.5 MPa (2.4 ksi). The flexural tensile 
strength (from ASTM C1609 tests) and modulus of elas-
ticity were measured as 16 MPa (2.33 ksi) and 43,500 MPa 
(6300 ksi), respectively. Details on the composition of the 
mixture are presented in Table 1. Figure A1 in the Appendix 
presents the size distribution of the different mixture dry 
components and a comparison of the combined grading 
curve to the modified Andreasen model used for packing 
optimization. A Type V cement was used for a mixture with 
a C3A content of 3.1% and a C3S/C2S ratio of 4.6. A lime-
stone powder filler was selected with an average particle 
size of 100 µm and 30.5% of particles passing a 325 mesh. 
The steel fibers used for the mixture were 0.2  x 13  mm 

(0.008 x 0.5  in.) in size with a nominal tensile strength of 
2750 MPa (398.5 ksi).

Casting procedure
Tensile specimens were cast in a casting bed in polyvinyl 

chloride (PVC) tubes 52 mm (2.05 in.) in diameter and 
1270 mm (50 in.) in length. These forms were impregnated 
with form oil prior to casting. A static spread in the range of 
254 to 279 mm (10 to 11 in.) from the ASTM C1437 static 
flow test results was optimal for the type of mixture used 
with no need for vibration and avoiding segregation of the 
fibers. The casting was performed in two different orienta-
tions intended to generate a preferential fiber alignment on 
the specimens.

The first casting orientation was horizontal, with induced 
flow along the longitudinal axis of the casting pipe, intended 
to produce a prevalent fiber orientation along the longitudinal 
axis of the specimens. The former was attained by funneling 
the material through a leading short piece of pipe with a 50 
x 75 mm (2 x 3 in.) PVC reducing coupling fitted at its end 
(refer to Fig. 2). As soon as the material came out at the 
opposite side, a pipe cap was placed at that end and the PVC 
pipe was slightly raised from the leading end and tapped 
several times to complete the filling and remove entrapped 
air. Later, the mold was turned into a vertical position, the 
leading pipe removed, and a second pipe cap placed at the 
leading end to prevent moisture loss. Total casting time was 
approximately 8 minutes per mold.

A second casting orientation was selected with the inten-
tion to produce a disorderly orientation of the fibers at an 
angle greater than 45 degrees with respect to the longitudinal 
axis. The most striking differences with the horizontal casting 
were achieved when a vertical casting was performed by 
slowly but continuously placing the material in the center of 
the pipe in such a manner that it did not touch the pipes’ wall. 
As for the horizontal casting, the tubes were sealed with caps 
after the placement of the material to prevent moisture loss.

Specimen preparation
At 2 days of age, the compressive strength of accompa-

nying 50 mm (2 in.) cubes was obtained with a minimum 
pre-established strength value of 55 MPa (8 ksi), and the 
50 mm (2 in.) diameter specimens were saw-cut to their 
required 400 mm (16 in.) length. The specimens were cut, 

Table 1—Nonproprietary mixture proportions

Material Quantity, kg/m3 (lb/yd3)

Cement, PC Type V 653 (1100)

Metakaolin 196 (330)

Limestone powder 345 (580)

Sand 915 (1540)

Air detrainer 6.53 (11)

HRWR 23.6 (6.25)

Water 212 (357)

Steel fibers* 156 (263)

*Straight, 0.2 x 13 mm, 2% by volume.

Note: PC is portland cement; HRWR is high-range water reducer.

Fig. 1—FHWA direct tension test for UHPC.
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demolded, and water-cured for 3 additional days, after which 
they were attached with 50 x 75 mm (2 x 3 in.) half steel 
nipples at their ends. The procedure for attaching the steel 
nipples involved the grinding and cleaning of the inside of 
the nipples, sanding of the specimens’ ends, and gluing the 
steel nipples to the ends with a creep-resistant epoxy. The 
overall gap between the specimen and the steel nipple was 
in the order of 0.75 mm (1/32 in.). This gap created enough 
space for the epoxy glue but was small enough to prevent 
the introduction of eccentricities at fabrication. During this 
research, connection failures or slip at the connection ends 
were not detected.

End conditions and load-transfer mechanism
The singularities of the DTT regarding the influences of the 

methods of gripping to the test machine, nonsymmetric defor-
mations, and the boundary end conditions of the tensile spec-
imens have been reported in previous research.4,5 Concerns 
about the out-of-plane rotations after cracking in rotating- 
rotating specimens are justified to some extent. Neverthe-
less, direct gripping of specimens in a fixed-fixed condition 
can introduce significant bending stresses that are dependent 
on the specimens’ face alignment. A study by Amin et al.5 on 
steel fiber-reinforced concrete (SFRC) found that a fixed-fixed 
end condition resulted in lower cracking strength than their 
rotating-rotating counterparts, which exhibited increasing 
out-of-plane rotations with increasing deformation because 
of the heterogeneous fiber distribution in the specimens. All 
these factors considered, it was determined that for a material 
such as UHPC, with multi-cracking, sustained strength, and/
or hardening behavior, the rotating-rotating end condition was 
best suited for the DTT.

The connection of the specimens to the machine was real-
ized through a ball joint-clevis mechanism that allowed for 
rotation about two axes. A threaded coupling and solid plug 
with internal threads were attached to the specimen ends prior 
to testing and the ball joints were attached to the solid plugs 
to complete the assembly. The threaded connection and the 
glued steel nipples at the ends of the specimens were intended 
to transfer the load progressively in a surface bond mechanism 
resembling the transfer of the tensile load from reinforcing bar 
to the concrete matrix (refer to Fig. 3(a) and 4).

Direct tension test development
During the development phase of the DTT (Round 1 of 

tests), the use of an extensometer with two LVDTs for the 
measurement of the deformation was particularly convenient 
for attachment to the cylindrical 50 x 400 mm (2 x 16 in.) 
specimens. Figure 3 shows the general layout and test setup 
of a tensile specimen. Nevertheless, after the tally and clas-
sification of the failure modes on 17 specimens, it was found 
that approximately two-thirds of them experienced localiza-
tion in the regions within 13 mm (0.5 in.) of the attachment 
points of the extensometer. A posterior linear-elastic (Ec = 
41,400 MPa [6000 ksi]) finite element analysis corroborated 
increases of approximately 30% in the tensile stress at those 
locations.

At the conclusion of Round 1, it was also found that an 
epoxy transition of 13 mm (0.5 in.) would greatly reduce 
tensile stresses at the vicinity of the steel-UHPC interface 
(refer to Fig. 4), diminishing the probability of failures at that 
location. The normalized stress profile at the specimen surface, 
with and without the epoxy transition, is presented in Fig. 4. 
The overall success rate of valid tests in Round 1 was only 
17.6%. Furthermore, it was not possible to have any success 
with strain-softening samples (cast at 90 degrees) in Round 1 
due to premature localization outside the gauge length.

A contactless method of measurement using digital 
image correlation (DIC) was implemented for Round 
2 of DTTs. The DIC method required the painting of 
the specimens with whitewash and the imprinting of a 
black speckle pattern, as shown in Fig. 5. The complete 
test setup with the systems’ cameras is presented in the 
same figure. This test setup proved to be effective for the 
testing of strain-hardening (cast at 0 degrees) and strain- 
softening samples (cast at 90 degrees) as well. Additionally, 
the DIC method presented the advantage of permitting a 
variable and extended gauge length that could be selected 
by the user. A 200 mm (8 in.) maximum gauge length was 
established, matching the constant stress region on the finite 
element analysis (refer to Fig. 4). The overall success rate 
of the Round 2 DTTs was 67%. The success of a test was 
defined as localization occurring within the gauge length. 
All the DTTs carried out in Rounds 1 and 2 were performed 
in a displacement-control mode at a test speed of 0.152 mm/
min (0.006 in./min). For more detailed information on the 

Fig. 2—Tensile test specimens casting procedure.
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specimen types, failure modes, and successful test results for 
both rounds, refer to Tables A1 and A2 in the Appendix.

EXPERIMENTAL RESULTS AND DISCUSSION
Validation of DIC measurements

The validation of the DIC method of measurement was 
performed by a comparison of valid tests from Round 1 
with similar tests executed in Round 2 (refer to Fig. 6). The 
parameters of comparison were the first cracking strain, 
overall shape of the stress-strain curve, and the similarities 
in the strain values at crack localization. It was found that 
regardless of the difference in test age, the variation in the 
first cracking strain was no more than 10% from one another, 

the overall shape of the stress-strain curves is remarkably 
similar, and the strain at crack localization was within 5% 
for the 0-degree casting orientation. Additionally, the slope 
of the linear portion of the stress-strain diagram obtained 
with the DIC method of measurement was within 10% of 
the modulus of elasticity obtained by the ASTM C486 test. 
In conclusion, the contactless method of strain measurement 
was considered a valid method for implementation in the 
direct tension testing of UHPC.

Direct tension tests of 0-degree casting 
orientation specimens

The behavior of specimens cast horizontally was character-
ized by an initial linear-elastic behavior with an average limit 
of proportionality at a rather low stress level of approximately 
4.5 MPa (650 psi). The linear-elastic stage was followed by a 

Fig. 3—Specimen details and overview of test setup (Round 1 of tests).

Fig. 4—Relative stress distribution with and without epoxy 
transition (from finite element analysis).

Fig. 5—Specimen speckle pattern and test setup with DIC 
system for Round 2.
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progressive decrease in stiffness and increase in stress until a 
first local peak occurred at stress and strain levels of 6.5 MPa 
(950 psi) and 450 με, respectively. This kind of discontinuity 
in the stress-strain curve was reported previously by Haber 
et  al.6 as possibly the result of geometric imperfections or 
most likely, in this case, material heterogeneity. After this first 
local peak, the trend of decreasing stiffness and increasing 
stress continued until reaching a second peak in the stress-
strain curve at an average stress level of 8.4 MPa (1200 psi) 
and strain of 1550 με. During this stage, the material experi-
ences the formation of several crack bands, as shown by the 
DIC mapping of strains (refer to Fig. 7).

The behavior described previously resembles the stress-
strain behavior of aluminum with an initial elastic phase 
immediately followed by a tensile-hardening phase. After the 
second peak, a pseudo stress plateau starts with the widening 
of pre-existing microcracks and the formation of new ones. 
The pseudo stress plateau is typically accompanied by some 
increase in tensile stress until reaching the crack localization 
point at an average maximum stress of 9.3 MPa (1350 psi) 
and strain of 5150 με. The results for this type of material 
and casting orientation are encouraging because of the high 
tensile strength obtained and a pseudo stress plateau that 
starts at a strain level of 1550 με, close to 75% of yielding of 
Grade 60 reinforcing bar. Additionally, localization occurs 
at a strain level for tension-controlled sections, guaranteeing 
an adequate level of ductility in flexure at failure. Figures 6 
and 7 show selected stress-strain curves for horizontally 
cast (0-degree) specimens and the idealized average curve, 
respectively. The latter contains the typical strain mapping 
from the DIC post-processing at different conspicuous points 
in the curve. Figure 8 exhibits the typical crack pattern and 
fiber orientation for the horizontally cast specimens.

The reason behind the favorable results described previ-
ously could be explained by hydrodynamics of viscous 
suspensions and flow molding theory and has been charac-
terized for UHPC by several authors.7,8 Essentially, the fibers 
are embedded in a high-plastic-viscosity, flowable media that, 
in the case of the 0-degree casting orientation, is subjected to 
shear flow due to the narrow, long, and confined nature of the 
casting pipe. Once a shear flow is established in the longitu-
dinal direction, the longer the traveling of the material in the 

form, the more the tendency of the fibers to align parallel to 
the form axis.

Direct tension tests of 90-degree casting 
orientation specimens

A remarkably different behavior in uniaxial tension 
has been observed in the 90-degree cast test specimens in 
comparison to the 0-degree specimens. The 90-degree cast 
(vertical) specimens presented either some tensile stress 
hardening (H) but limited ductility, or experienced tension 
softening (S) right after first cracking. In the hardening type 
(H) specimens, the average limit of proportionality was 
measured at 6 MPa (850 psi). After this initial linear-elastic 
stage, the material experienced stiffness degradation with 
increasing strength, similar to that of the 0-degree speci-
mens, except that the transition to a stress plateau was not 
as smooth, with the appearance of three to four macrocracks 
along the way. Nevertheless, the stress plateau was reached 
at the same stress level of 8.3 MPa (1200 psi) but at a lower 
strain value of 1000 με. After this point, the material expe-
rienced some hardening in a less remarkable fashion than 
the 0-degree counterparts, until achieving localization at a 
stress level of 8.6 MPa (1250 psi) and at a strain of 2800 με. 
A steeper descending branch after localization was also 
observed (refer to Fig. 9 and 10).

Fig. 6—Stress-strain curves for 0-degree casting orientation. Fig. 7—Idealized stress-strain curve for 0-degree casting 
orientation.

Fig. 8—Typical crack pattern and fiber orientation for 
0-degree casting.
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On the other hand, several specimens in Rounds 1 and 2 
experienced tension-softening (Type S) behavior right after 
first cracking, which occurred at a strain value very close 
to the limit of proportionality. The low strength values 
achieved by those samples were also noted (refer to Fig. 11 
and 12), with an average strength of approximately 3.2 MPa 
(460 psi). Figure  13 shows the typical crack pattern and 
fiber orientation at the failure surface for 90-degree cast 
specimens.

These findings are diametrically opposite to the outcomes 
of the horizontally (0-degree) cast specimens and point out 
the crucial role that fiber orientation and distribution play 
in both strength and ductility of UHPC. This issue has also 
been observed in the work of Maya Duque and Graybeal,3 
but it is more pronounced in this case because of the proce-
dure implemented for the vertical casting in this research. 
The vertical casting procedure induced a divergent flow 
(refer to Fig.  14) and the collapse of the fibers under the 
weight of the material placed above. In a divergent flow, 
the fibers tend to migrate from the center to the pipes’ wall. 
These mechanisms provoked a prevalent orientation of the 
fibers at an angle of more than 45 degrees with respect to the 
longitudinal axis of the pipe form.

Some questions remain open in regard to the possibility 
of anisotropic behavior induced by casting orientation in 
actual UHPC elements, and to whether the casting criteria 

used in this work could mimic in-place conditions of full-
scale specimens—for instance, in vertically cast, relatively 
narrow elements. Ultimately, the results from this work and 
other research found in the literature3,9,10 should not be left 
for oblivion, especially in the case of a possible widespread 
use of UHPC as a standalone material for shear resistance in 
precast applications.

CONCLUSIONS
From a total of 26 direct tension tests (DTTs) in Rounds 1 

and 2, several conclusions are drawn:
1. The casting orientation procedure successfully estab-

lished two extreme, different behaviors in tension for the 
ultra-high-performance concrete (UHPC) mixture studied. 
In one extreme, the 90-degree (vertical) casting orienta-
tion produced samples with softening behavior (Type S 
specimens) and low strength results. In the other extreme, 
the samples cast at 0 degrees (horizontal) showed strain- 
hardening behavior and higher tensile strength results.

2. The proposed DTT can capture the full behavior in 
uniaxial tension of the nonproprietary UHPC mixture 
studied. Success was achieved in tension-hardening speci-
mens and in tension-softening samples as well. The new test 
has some advantages over other DTTs regarding specimen 
preparation and the relative simplicity of its execution.

Fig. 9—Stress-strain curves for 90-degree casting orienta-
tion (Type H behavior).

Fig. 10—Idealized stress-strain curve for 90-degree casting 
orientation (Type H behavior).

Fig. 11—Stress-strain curves for 90-degree casting orienta-
tion (Type S behavior).

Fig. 12—Idealized stress-strain curve for 90-degree casting 
orientation (Type S behavior).
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3. The new test has a similar success rate (67%) as that 
of the Federal Highway Administration (FHWA) test (65%) 
when using digital image correlation (DIC) and proper spec-
imen preparation.

4. When specimens are cast using the 0-degree casting 
procedure described herein, the limestone-metakaolin 
nonproprietary mixture exhibits a maximum average tensile 
strength of 9.3 MPa (1350 psi), tensile-hardening behavior, 
multi-cracking, and an average crack localization strain of 
approximately 5150 με.

5. Specimens fabricated using the vertical casting proce-
dure (90 degrees) have either a limited ductility or behave in a 
tension-softening manner, achieving very low strength values.

6. Casting orientation induces flow and alignment of fibers 
in a particular preferential direction, which could produce 
significant variations in the tensile properties of the UHPC 
material in other directions.
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NOTATION
Ec	 =	 modulus of elasticity in tension of UHPC
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APPENDIX

Table A1—Specimen types and failure modes of specimens in this research

DTTs summary

Test No. Casting orientation Epoxy transition? Localization*, mm (in.) Failure location

Round 1 (deformations measured with extensometer)

1 0 degrees No 0 (0.00) At steel interface

2 90 degrees No 51 (2.00) Close to transition

3 0 degrees Yes 114 (4.50) Within gauge length

4 0 degrees Yes 108 (4.25) Within gauge length

5 90 degrees Yes 102 (4.00) Within gauge length

6 0 degrees Yes 25 (1.00) Close to transition

7 0 degrees Yes 89 (3.50) At attach points

8 0 degrees No 83 (3.25) At attach points

9 90 degrees No 70 (2.75) At attach points

10 90 degrees No 64 (2.50) At attach points

11 0 degrees Yes 70 (2.75) At attach points

12 90 degrees Yes 76 (3.00) At attach points

13 0 degrees No 57 (2.25) At attach points

14 0 degrees No 70 (2.75) At attach points

15 0 degrees Yes 70 (2.75) At attach points

16 0 degrees Yes 95 (3.75) At attach points

17 90 degrees No 70 (2.75) At attach points

Round 2 (deformations measured with DIC)

1 90 degrees Yes 114 (4.50) Within gauge length

2 0 degrees Yes 127 (5.00) Within gauge length

3 0 degrees Yes 95 (3.75) Within gauge length

4 90 degrees Yes 76 (3.00) Within gauge length

5 90 degrees Yes 102 (4.00) Within gauge length

6 90 degrees Yes 76 (3.00) Within gauge length

7 90 degrees Yes 25 (1.00) Close to transition

8 0 degrees Yes 0 (0.00) At steel interface

9 90 degrees Yes 13 (0.50) Close to transition

*From nearest steel interface.
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Table A2—Details of strain and stress data for valid tests in Rounds 1 and 2

Failure within gauge length tensile tests summary

Test No. Casting orientation Elastic limit stress, MPa (ksi) Elastic limit strain, µε Tensile strength, MPa (ksi) Localization strain, µε

Round 1 (deformations measured with extensometer)

3 0 degrees 6.4 (0.93) 322 9.3 (1.35) 5304

4 0 degrees 8.0 (1.16) 284 10.1 (1.47) 5229

5 90 degrees 6.7 (0.97) 310 8.0 (1.15) 3224

Round 2 (deformations measured with DIC)

1 90 degrees 7.0 (1.01) 390 9 (1.30) 2301

2 0 degrees 5.0 (0.73) 370 8.4 (1.22) 5124

3 0 degrees 6.7 (0.98) 360 9.7 (1.42) 4880

4* 90 degrees 3.4 (0.49) 86 3.4 (0.49) 86

5* 90 degrees 3.0 (0.43) 75 3.0 (0.43) 75

6* 90 degrees 8.7 (1.26) 342 8.7 (1.26) 342

*Type S specimens.

Note: 1 MPa = 0.145 ksi.

Fig. A1—Particle-size distribution of dry constituents of 
UHPC mixture.
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An investigation was performed on the drying shrinkage and tensile 
drying creep characteristics of a nonproprietary ultra-high-performance 
concrete (UHPC) mixture. The mixture was formulated using 
metakaolin as the supplementary cementitious material (SCM) and 
limestone powder as the mineral filler. Cylindrical specimens with 
dimensions of 52 x 400 mm (2.05 x 16 in.) were fabricated and 
loaded at 7 and 11 days from casting to various stress levels for 
90 days. Additional specimens were fabricated from a proprietary 
mixture with a silica fume-ground quartz formulation to study the 
effects of mixture composition. Simultaneous free drying shrinkage 
measurements were recorded in accompanying specimens placed 
in the same room environment. Attention was given to the effect of 
the casting orientation, age at loading, and mixture composition 
on the drying shrinkage and drying creep behavior of the samples. 
These tests show that the metakaolin-limestone powder mixture 
has significantly lower drying shrinkage and specific drying creep 
than the silica fume-ground quartz mixture. Additionally, the age 
at loading influences primary creep behavior while not affecting 
secondary creep at the same stress level. It seems that fiber orienta-
tion plays a significant role in the drying creep behavior of UHPC 
and that cracked UHPC under constant tensile stress undergoes a 
significant amount of fiber slip.

Keywords: casting orientation; drying shrinkage; mixture composition; 
tensile creep; ultra-high-performance concrete (UHPC).

INTRODUCTION
Ultra-high-performance concrete (UHPC) is a cementi-

tious composite offering strength and durability features that 
could potentially transform the precast concrete industry. 
Nevertheless, the widespread use of UHPC as a standalone 
material for shear resistance requires some critical knowl-
edge about its long-term behavior in tension. Creep consists 
of additional deformations over time in excess of the initial 
strain at a constant level of stress. In cementitious mate-
rials, creep is the result of water movement (microdiffusion) 
between capillary and gel pores,1 producing local debonding 
of the intertwined solid phase of the calcium-silicate-hydrate 
(C-S-H) gel. Total creep strains are the sum of basic creep, 
occurring under sealed conditions, and drying creep, occur-
ring under conditions of exposure to the environment. 
Concurrent deformations (shrinkage) caused by water loss 
influence the total deformation under constant stress. Internal 
water loss produces autogenous shrinkage. The loss of water 
to the environment produces drying shrinkage. These defor-
mations need to be subtracted from the total deformation to 
obtain basic or drying creep values, as required by each case.

Tensile creep of UHPC is one of those areas where very 
limited research has been published, in part because of the 

complexities surrounding the required test methods. Another 
obstacle has been the lack of a broadly accepted framework 
for determining the full spectrum of tensile behaviors of the 
material. Although some of these difficulties persist, various 
researchers2,3 have contributed to this knowledge base, 
mainly studying the tensile creep behavior of proprietary 
mixtures that have silica fume as the main supplementary 
cementitious material (SCM), with or without ground quartz 
as the mineral filler.

Garas Yanni2 conducted a multiscale investigation on the 
tensile creep of UHPC, observing that the drying tensile 
creep of UHPC is several times greater than its compres-
sive creep at the same relative stress level and that the long-
term creep behavior is greatly affected by the porosity of 
the fiber-matrix interface. The researcher favored the use of 
thermal treatment and proper consolidation of the material if 
intended for use as shear reinforcement in bridge girders. A 
tensile creep study by Switek3 proposed the hypothesis that 
the nonlinear viscoelasticity observed in tensile creep spec-
imens tested at an early age is mainly caused by the internal 
moisture changes verified during the incipient hydration 
process.

The work presented in this paper focuses on several aspects 
not covered extensively in the current literature related to 
the tensile creep behavior of nontraditional, nonproprietary 
UHPC.

RESEARCH SIGNIFICANCE
The use of UHPC for shear resistance constitutes a logical 

path of application for the material due to its enhanced tensile 
strength and ductility in comparison with high-strength 
concrete. However, the long-term behavior in tension of this 
relatively novel material has not been addressed in detail, 
which is one of the issues causing some stagnation of the 
technology. Various aspects have been identified where 
gaps in the current literature still exist, such as the effects 
on tensile creep of the age at loading, mixture composition, 
casting/fiber orientation, and the creep behavior of cracked 
specimens. This paper provides some answers to these 
issues.
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EXPERIMENTAL PROCEDURE
Creep frames

Various test setups have been proposed2,3 for the long-
term tensile creep testing of concrete and UHPC, most of 
them consisting of a dead load-lever arm system with some 
similarities to the one proposed by Bissonnette and Pigeon4 
for fiber-reinforced concretes. The moveable creep frames 
built for the purpose of this study are inspired by the work 
of Switek3 with the introduction of several modifications. 
These modifications were intended to increase stiffness and 
minimize out-of-plane deformations, and accommodate 
a lever arm ratio of 6:1 and bigger loading plates for the 
use of steel weights. Additionally, the frames were made in 
two sections to make possible their placement and assembly 
inside the controlled environment room. Figure 1 depicts 
the steel frames fabricated for this investigation. Calibration 
of each lever was performed prior to the use of the creep 
frames. This was achieved by applying incremental step 
loading at the tip of the lever and measuring the tensile force 
reaction through a donut load cell located at the top of the 
frame. The slope of the resulting straight line of the tensile 
force versus applied load was the value of the lever ratio. All 
the values of the lever ratio were found to be within ±3% of 
the theoretical value of 6.

Materials
A nonproprietary mixture was developed for this shrinkage 

and creep study, with metakaolin as the SCM at an amount 
of 30% of cement content by weight. Limestone powder 
was used as the mineral filler with an average particle size 
of 100  μm. Packing optimization of dry constituents was 
achieved by using the sum of squares of residuals (SSR) of 
the total grading curve points, departing from the modified 
Andreasen and Andersen model with a k-value of 0.225. An 
air detrainer in a 1% dose by cement weight was added to 
the mixture to curb some of the entrapped air introduced 
by the high amount of high-range water-reducing admix-
ture (HRWRA) required for workability. Table 1 shows 
the composition of the mixture described previously. The 
proprietary mixture used in this study has silica fume as the 
main SCM and ground quartz as the mineral filler (refer to 

Graybeal5).The mixing of the materials was performed in a 
horizontal pan mixer in batches of 0.033 m3 (1.1 ft3) with 
a total mixing time of 13 minutes for the nonproprietary 
mixture and up to 45 minutes for the proprietary mixture.

Specimens
The creep specimens were cast in a casting bed, in clear, 

polyethylene terephthalate glycol (PETG) plastic tubes of 
52 mm (2.05 in.) inside diameter and 1220 mm (48 in.) in 
length, using two different casting orientations intended to 
induce different preferential fiber alignment in the speci-
mens. The first set of specimens was cast with the casting 
bed placed horizontally (0 degrees) and the second set with 
the casting bed in a vertical position (90 degrees). External 
vibration was used for the horizontal specimens to facilitate 
material placement. Figure 2 shows the casting orientations 
described previously. After casting, the tubes were sealed to 
prevent moisture loss and placed in an upright position until 
samples reached at least 55 MPa (8000 psi) of compressive 
strength, tested from accompanying 50 mm (2 in.) cubes. 
The specimens were then cut to 400 mm (16 in.) lengths 
using a concrete saw. Following cutting, the specimens were 
water cured for 3 additional days, after which their ends 
were slightly sanded, cleaned, and epoxied to receive the 
steel nipples that were attached to them.

Fig. 1—Overview of creep frames used in research.

Table 1—Nonproprietary mixture proportions

Material Proportions by weight

Cement, PC Type V 1.000

Metakaolin 0.300

Limestone powder 0.523

Sand 1.400

Air detrainer 0.010

HRWRA 0.051

Water 0.325

Steel fibers* 0.239

*Straight, 0.2 x 13 mm, 2% by volume.

Note: PC is portland cement.
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The drying shrinkage specimens followed the same prepa-
ration procedure as the creep specimens, except that steel 
nipples were not attached to their ends. Figure 3(a) shows 
the shrinkage specimens resting on the free drying shrinkage 
table.

Instrumentation
Two concrete surface strain gauges 60 mm (2.5 in.) long 

were glued to opposite sides of all the specimens. Addition-
ally, the tensile creep specimens were instrumented with two 
50 mm (2 in.) linear potentiometers located at 90 degrees 
from the strain gauges and at opposite sides of the specimens. 
The potentiometers were attached to the specimens with 
U-bolts, as shown in Fig. 3(b). All sensors were connected 
to a data acquisition system, and deformation values were 
recorded at a 5-minute time interval for the first 24 hours and 
at 30-minute increments afterward, until the end of the tests.

Loading procedure
The tensile strength of each mixture and casting direction 

was determined by direct tension tests prior to the loading of 
the creep specimens, as the average strength of two samples. 
The test method used to determine the tensile strength is a 
new direct tension test in displacement control at a loading 
rate of 0.15 mm/min (0.006 in./min).6 For the nonpropri-
etary and proprietary mixtures cast at 0 degrees, the average 
tensile strengths were measured at 5.6 and 7.3 MPa (0.81 
and 1.06  ksi), respectively. The tensile strength of the 

nonproprietary mixture cast at 90 degrees was 4.3 MPa 
(0.62  ksi). These strength values served to determine the 
required amount of steel weights to place on the loading 
plates for each sample and depended on the target stress 
level. The calculation of these steel weights included the 
predetermined weights of hardware, lever, and plate. Table 2 
shows the actual stress and stress-strength ratios applied 
to each of the samples. The specimens were attached and 

Fig. 2—Casting orientations for shrinkage and creep 
specimens.

Fig. 3—Test setups for shrinkage and creep specimens.

Table 2—Summary of specimens in tensile creep test program

Specimen Mixture
Casting orientation, 

degrees
Age at loading, 

days
Applied tensile stress, 

MPa (ksi) Stress-strength ratio

L1 Nonproprietary 0 7 4.7 (0.68) 0.84

L2 Nonproprietary 0 7 4.7 (0.68) 0.84

L5 Nonproprietary 0 11 4.9 (0.71) 0.87

L6 Nonproprietary 0 11 4.1 (0.59) 0.72

L7 Proprietary 0 11 4.3 (0.63) 0.59

L9 Nonproprietary 90 11 3.7 (0.53) 0.85

L10 Nonproprietary 90 11 3.7 (0.53) 0.85
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aligned to the frame and levers through two ball joints at 
each end. The load was progressively transferred to the 
specimens by simultaneously turning the nuts of the two 
hanging rods supporting the steel plates until the plates were 
approximately 38 mm (1.5 in.) above the bottom beams of 
the frames. The load-transfer operation lasted approximately 
5 minutes. Additionally, temperature and humidity were 
controlled over the duration of the tests to 23 ± 1°C (73 ± 
2°F) and 50 ± 4% relative humidity, respectively. Table  2 
shows a summary of the creep specimens tested in this 
research program.

EXPERIMENTAL RESULTS AND DISCUSSION
Drying shrinkage specimens

Drying shrinkage deformations from five specimens were 
recorded starting at 7 days of age and for 94 days afterward. 
The specimens rested over low-friction rods to prevent any 
restraint. Figure 4 shows the results of free drying shrinkage 
deformations as the average of two samples (two gauges 
each), except for the nonproprietary mixture cast vertically 
(90 degrees), where only the average of two gauges on one 
sample was measured. The experimental evidence shows the 
drying shrinkage behavior to be similar for both mixtures 
regardless of casting orientation for the first 100 hours, 
with a slightly steeper slope for the nonproprietary mixture. 
After this accelerated phase, shrinkage of the nonproprietary 
mixture progresses at a much lower rate than the proprietary 
mixture.

At 94 days of testing, the proprietary mixture drying 
shrinkage strains were 53% higher than those of the nonpro-
prietary mixture. These results are somewhat unexpected 
because the nonproprietary mixture has a greater water-
binder ratio (w/b) of 0.25 in comparison to the 0.20 ratio 
of the proprietary mixture. A plausible explanation for this 
behavior resides in the increased sand-powder ratio; a lower 
cement content; and larger particle size of the sand, mineral 
filler, and SCM (metakaolin) of the nonproprietary mixture. 
In terms of the preferential fiber orientation, it is apparent 
that casting orientation does not affect the drying shrinkage 
behavior of the nonproprietary mixture.

Drying creep specimens
The 50 mm (2 in.) cube compressive strength and modulus 

of elasticity (ASTM C469) of the material at the time of load 
transfer were 124 MPa (18 ksi) and 41.4 GPa (6000 ksi), 
respectively. Drying creep deformations were calculated as 
the result of the total deformations minus the corresponding 
shrinkage deformations. Basic creep deformations in sealed 
specimens were not measured during this research because 
loading started at ages (7 and 11 days) where almost all 
autogenous shrinkage has taken effect in the specimens (refer 
to Fig. A.1 in Appendix A). Drying creep strains reported in 
Fig. 5(b) include the initial elastic strain, Ɛo. Table A.1 in 
Appendix A shows the initial elastic deformation, Ɛo, and the 
drying creep coefficient at 90 days (Ɛ90/Ɛo) for the specimens 
in this research.

Effect of age at loading
Specimens L1 and L2 were loaded at 7 days from casting 

at a 4.7 MPa (0.68 ksi) stress level for 90 days. Specimens 
L5 and L6 were loaded at 11 days at stress levels of 4.9 MPa 
(0.71 ksi) and 4.1 MPa (0.59 ksi), respectively. Figures 5(a) 
and (b) show the total strains and drying creep strains for 

Fig. 4—Free drying shrinkage of proprietary and nonpro-
prietary UHPC mixtures.

Fig. 5—Total strains and drying creep of nonproprietary 
mixture (0-degree casting orientation).



101ACI Materials Journal/March 2023

these four specimens. It is evident that when specimens 
are loaded in tension at 7 days, the total strains are heavily 
affected by shrinkage in comparison to the lesser impact 
shown on those loaded at 11 days of age. Additionally, the 
age at loading affects the onset of the state of a constant rate 
of creep deformation (secondary creep). Specimens loaded 
at 11 days experienced a shortening of the primary creep 
stage in approximately 100 hours in comparison to those 
loaded at 7 days. Secondary creep seems to not be affected 
by the age at loading at approximately the same stress level. 
These findings are very similar to other results reported in 
the literature,3,7 tying a reduction in creep deformation to 
hydration evolution with time.

Effect of fiber orientation
Specimens L6 and L10 were loaded at 11 days of age at 4.1 

and 3.7 MPa (0.59 and 0.53 ksi) stress levels, respectively. 
Specimen L6 was cast horizontally (0 degrees), whereas 
Specimen L10 was cast vertically (90 degrees). Specific 
drying creep for both specimens is presented in Fig. 6. These 
results show an increase in the specific creep of the spec-
imen cast at 90 degrees in comparison to the specimen cast 
horizontally regardless of being loaded at a smaller stress 
level. This behavior could be explained by the microc-
racking effect theory (Neville et al.8 and Bissonnette et al.7). 
A preferential fiber orientation along the axis of the creep 
specimen, where the tensile stress is applied, will prevent the 
propagation of microcracks, thus reducing the potential total 
amount of creep in the specimen.

Effect of mixture composition
To study the effect of mixture composition, Specimen L7 

from the proprietary mixture was loaded at 11 days of age 
at a 4.3 MPa (0.63 ksi) tensile stress level. This specimen 
was cast horizontally to produce a preferential fiber orien-
tation along the longitudinal axis of the specimen. Drying 
specific creep values were obtained during the 90-day period 
of the creep tests and compared to those from Specimens L5 
and L6 of the nonproprietary mixture, which had the same 
casting orientation. Results from these experiments (refer to 
Fig. 7) show an increase of specific creep for the proprietary 

mixture of 33% over the nonproprietary mixture at approxi-
mately the same stress level, and just 12% less specific creep 
than Specimen L5, which was loaded at a higher stress level 
of 4.9 MPa (0.71 ksi). Results by Garas Yanni2 in untreated 
square section specimens, made of a proprietary mixture and 
tested at a stress level of 40% of tensile strength, show specific 
tensile creep of approximately five times greater than those 
shown in Table A.1 for the nonproprietary mixture tested at 
7 days of age. A probable reason for this behavior resides in 
the finer raw materials and microstructure that is typically 
obtained from the silica fume-ground quartz mixtures that in 
turn produce an increase in both shrinkage and creep (refer 
to Fig. 4 and 7).

Creep of cracked specimens
Specimens L1, from the nonproprietary material, and L7, 

from the proprietary mixture, cracked during load transfer. 
However, results from this research suggest that there is no 
change in behavior for the uncracked portion of the mate-
rial, as shown by a comparison of Specimens L1 (cracked) 
and L2 (uncracked), shown in Fig. 5(a) and (b). The posi-
tion of the cracks was such that it permitted to record defor-
mations with the linear potentiometers during the 90-day 
period of the creep tests (refer to Fig. 8). Results from these 
measurements indicate that right after cracking, the mate-
rial starts experiencing fiber slip events in conjunction with 
drying creep. The fiber slip measured in the specimen made 
with the nonproprietary mixture (L1) was larger at transfer 
but experienced only one additional fiber slip event during 
the whole test period. Specimen L7, made with the propri-
etary mixture, experienced several fiber-slip events during 
the 90-day period of the test. These findings suggest that 
cracked UHPC elements in tension, under sustained loads, 
will experience a significant amount of fiber slip.

CONCLUSIONS
From the results of the tests in this investigation, the 

following conclusions can be drawn:
1. After 94 days of testing, the drying shrinkage of the 

silica fume-ground quartz (proprietary) mixture is 53% 

Fig. 6—Effect of casting orientation on specific drying creep 
of nonproprietary mixture.

Fig. 7—Effect of mixture composition on specific drying 
creep.
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greater than that of the metakaolin-limestone powder 
(nonproprietary) mixture.

2. The age at loading greatly affects primary creep but 
not secondary creep. After some progress in the hydration 
process, it seems that there are no significant changes in the 
viscoelastic properties of specimens loaded at 7 or 11 days 
of age at the same stress level.

3. Specific drying creep of the proprietary mixture is 
approximately 33% greater than that of the nonproprietary 
mixture at approximately a 4.1 MPa (0.6 ksi) stress level at 
90 days.

4. Specific creep of 90-degree cast nonproprietary 
ultra-high-performance concrete (UHPC) is greater than 
the specific creep of 0-degree cast UHPC, even at a smaller 
stress level.

5. Recorded creep deformations of cracked specimens show 
a substantial amount of fiber slip at constant stress levels.
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NOTATION
t0	 =	 time at start of test (in days)
tn	 =	 time at end of test (in days)
Ɛo	 =	 initial elastic strain
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Table A1—Summary of deformations in tensile creep specimens

Tensile creep specimens deformations summary

Specimen name Initial deformation Ɛ0, με
Final deformation

Initial + Creep Ɛ90, με
Specific creep at 90 days 

SC90, με/MPa (με/ksi)
Creep coefficient at 90 days 

Cr90

L1 111 264 32.5 (225) 2.38

L2 111 266 33.0 (228) 2.40

L5 128 206 15.9 (110) 1.61

L6 106 149 10.6 (73) 1.41

L7 70 131 14.1 (97) 1.87

L9 91 141 13.6 (94) 1.55

L10 94 137 11.7 (81) 1.46

Fig. A1—Autogenous shrinkage of nonproprietary UHPC. 
(Note: Results shown are average of three samples.)
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This paper describes an approach to predict the mechanical and 
fracture behavior of cement-based systems by combining thermo-
dynamic and finite element analysis models. First, the reaction 
products in a hydrated cementitious paste are predicted using a 
thermodynamic model. Second, a pore partitioning model is used 
to segment the total porosity into porosity associated with gel pores 
and capillary pores. A property-porosity relationship is used to 
predict the elastic modulus, tensile strength, and fracture energy of 
the hardened cement paste. The paste’s modulus, fracture energy, 
and tensile strength, along with information on the aggregate prop-
erties and interfacial transition zone properties, are used as inputs 
to a finite element analysis model to predict the flexural strength 
and fracture response of mortars.

Keywords: elastic modulus; finite element analysis (FEA); fracture; 
mechanics; porosity; tensile strength; thermodynamic modeling.

INTRODUCTION
The concrete industry is actively working on reducing 

the CO2 emissions associated with conventional concrete 
manufacture through several approaches.1,2 First, the clinker 
content of concrete can be reduced by substituting a portion 
of the ordinary portland cement (OPC) with supplementary 
cementitious materials (SCM) or filler powders.3-7 Second, 
the paste content in the concrete can be reduced through 
appropriate mixture design.8-11 Third, the service life of 
the concrete can be improved, thereby reducing the annual 
carbon content.

This paper discusses an approach to lower the cement 
content used in concrete through improved mixture design 
by providing a tool to predict the mechanical behavior of 
concrete more accurately. Conventional mixture design 
approaches often rely on the use of empirical/experimental 
predictions of the performance of concrete,12 especially 
when nonconventional cements and SCMs like fly ash, slag, 
silica fume, and so on, are used.13 This often does not take 
full advantage of the benefits of the SCM being added to the 
system, such as improvements to the compressive strength 
of concrete made with the SCM.14-17 Sometimes, empirical 
modifications are made to predict the compressive strength 
of systems containing SCMs like fly ash18; however, these 
calibrations are typically SCM-specific. Many historical 
SCM sources are changing or becoming less available,3,5,19 
and as a result, there has been a desire to identify alterna-
tive SCMs (for example, municipal waste incineration ash, 
bottom ash, boiler slag, natural pozzolans, and agricultural 
waste ash),20-29 and to develop approaches to use off-spec 

materials.20 Testing each SCM individually to predict 
the performance of concrete made with the SCM is time- 
consuming and expensive. There exists a need for robust 
tools to predict the performance of concrete using these 
SCMs (for example, strength, diffusivity, time to corrosion, 
shrinkage, and freezing-and-thawing performance).

There is a growing body of research that uses thermody-
namic models to predict the reaction products for cementi-
tious materials.30-37 While powerful, these techniques do not 
describe the spatial distribution of these reaction products. 
For example, they can predict the total pore volume but 
not the size and distribution of the pores. To overcome this 
limitation, the authors have developed an approach, the pore 
partitioning model (PPM), to interpret the results of the ther-
modynamic calculations to predict the pore structure.38,39 
Computational tools have also been developed that can 
link thermodynamics, kinetics, pore structure information, 
and predicted performance.17,40,41 This tool requires several 
inputs, including the chemistry of the binder used (OPC 
and SCM chemistries and contents, and the SCM reactivity, 
which can be measured using a pozzolanic reactivity test42-44), 
the physical properties of the concrete constituents (specific 
gravity and fineness of the OPC and SCMs, aggregate prop-
erties, and so on), and the mixture proportions of the concrete 
(amounts of air, paste, and aggregate). The tool can then 
be used for any cementitious material combination, in any 
proportion, to predict key properties of the hydrated system, 
including strength, porosity, electrical resistivity, forma-
tion factor, and ionic diffusion coefficients.8,16,17,40,41 These 
predicted properties have been used to develop performance- 
based mixture proportioning methods8,20 and service life 
prediction models.45

Despite these recent developments, there are opportunities 
to improve the models. For example, in the performance- 
based mixture design tool noted earlier,8,20 the compressive 
strength was predicted using the empirical gel-space ratio 
from Powers and Brownyard,46 which was developed for 
OPC systems. The flexural strength was then calculated 
using the empirical relation to compressive strength from 
ACI 318-19. Several researchers have been examining ways 
to improve the strength predictions for OPC + SCM systems, 
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such as coupling micromechanical models with thermody-
namic modeling15,47-51 or by using computer simulations 
such as CEMHYD3D.52 Approaches using fractal scaling 
have also been proposed to predict the mechanical response 
of cementitious composites.53 While these approaches 
are promising, there is a potential to predict mechanical 
behavior using fracture mechanics.54-58 Fracture mechanics 
can natively predict flexural strength,54,55,58 which can be 
used as a target criterion in the performance-based mixture 
design approach.

This paper proposes a framework that enables the mechan-
ical and fracture behavior of a heterogenous concrete to be 
predicted using the chemical composition and reactivity of 
the cementitious materials used and the mixture propor-
tions of the concrete. This is achieved through a four-step 
approach that predicts the reaction products of the paste 
and uses these products to determine the pore structure and 
mechanical properties. The framework is compared with 
experimental data on pastes and mortars. This framework is 
designed to be a generic tool that can be used to predict the 
fracture behavior of concrete using a wide variety of cement 
and alternative cement chemistries.

RESEARCH SIGNIFICANCE
This paper demonstrates a four-step framework to predict 

the mechanical response of cementitious composites using 
the outputs of thermodynamic modeling. Thermodynamic 
modeling is used to predict the reaction products, and a 
PPM predicts the porosity and pore volumes. This is used to 
predict the mechanical properties of the paste using property- 
porosity relationships and scaled to mortar and concrete 
using a finite element model (FEM). This approach considers 
the binder chemistry and pore volumes to predict concrete’s 
mechanical properties. The FEM approach considers the 
natural variability in the cementitious matrix and aggregate 
shape and distribution.

MODELING FRAMEWORK
The modeling framework developed to predict the 

mechanical and fracture characteristics of cement paste and 
mortar in this paper consists of four parts and is shown in 
Fig. 1. First, the chemical composition of the cementitious 
binder and mass fraction of the constituents are combined 
with a thermodynamic modeling framework (that includes 
kinetics) to predict the reaction products of OPC and OPC + 
SCM pastes.32-34,59,60 Next, the PPM is used to predict the 
paste porosity and volumes of different sizes of pores (gel 
and capillary pores).38,39 The predicted pore volumes are 
then used as inputs to a property-porosity model61,62 to 
predict the elastic modulus (Ep) and fracture energy (Gp

c) 
of the paste. The Ep and Gp

c are used to calculate the tensile 
strength of the paste (ftp′) using the concepts of linear-elastic 
fracture mechanics (LEFM). The Ep, Gp

c, and ftp′ are then 
used as inputs to an FEM to predict the mechanical and frac-
ture behavior of mortar.

Thermodynamic model
Thermodynamic calculations are used to predict the 

volumes and compositions of the reaction products that form 
when cement paste hydrates. In this work, the GEMS3K 
software63 is used in conjunction with the default PSI/Nagra 
database and the CemData v18.01 database32 to predict the 
reaction products that form. This approach has been exten-
sively validated and shown to accurately predict the reaction 
products of OPC and OPC + SCM systems.32-34,63-65 While 
all possible phases that can form in cementitious binder 
systems are available in this database, the formation of sili-
ceous hydrogarnet, carbonate-ettringite, and OH-hydrotalcite are 
blocked from forming based on evidence from the literature 
that these phases are unlikely to form in significant quan-
tities at the time frames chosen in this study.38,40 The H/S 
of the C-S-H formed in the simulations was also corrected 
based on recent experimental evidence.32,65

Thermodynamic modeling allows for calculating the prod-
ucts of the cementitious and pozzolanic reactions at thermo-
dynamic equilibrium (that is, at an infinite time). However, 

Fig. 1—Four-step modeling framework proposed consists of: (a) thermodynamic model; (b) pore partitioning model (PPM); 
(c) property-porosity relations; and (d) finite element model.
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most cementitious systems are studied at a finite time and 
have not yet reached thermodynamic equilibrium. Kinetic 
models are often used in conjunction with thermodynamic 
models to predict the results of thermodynamic models at a 
given time. In this work, the modified Parrot-Killoh model66 
is used to calculate the degree of hydration (DOH) of the 
cement clinker phases (C3S, C2S, C3A, and C4AF) at a given 
age (denoted as DORph), which is the mass fraction of the 
clinker phase available to react at a given time. The mass 
fraction of minor oxides in the cement (Na2O, K2O, MgO, 
and SO3) is determined from the degree of clinker hydration 
following the method outlined in Taylor.67 The DOH of the 
system at a given age is the mass normalized DORph of the 
four clinker phases.

Pore partitioning model
Thermodynamic modeling can only provide the total 

amount of liquid water in the OPC paste after the hydra-
tion reaction occurs. Recent works38-40 have shown that 
thermodynamic models can be synergistically combined 
with the concepts of the Powers-Brownyard model68 using 
a PPM to calculate the volume fraction of gel solids, gel 
pores (pores less than 5 nm in size40), capillary pores (pores 
between 5 nm and a few µm in size40), and pores due to 
chemical shrinkage that are present in the OPC systems. The 
PPM has been successfully used to predict the porosity and 
pore volumes of OPC pastes.38 The PPM has been extended 
to OPC mortar and concrete materials to predict the total 
porosity and several porosity-related performance properties 
using a pore partitioning model for concrete (PPMC).17,40

The total porosity of the paste (ϕp in vol. %) is calculated 
as the sum of the volume fractions of gel water (vgw), capil-
lary water (vcw), and pores due to chemical shrinkage (vcs), 
as shown in Eq. (1)

	 ϕp = vgw + vcw + vcs	 (1)

The porosity of the paste can be scaled up to calculate the 
porosity of the mortar system (ϕm) using the PPMC17 using 
the volume fraction of paste in the mortar (Vp), the volume 
fraction of the air voids (Vair), and the volume fraction of 
aggregates (Vagg), as shown in Eq. (2)

	 ϕm = Vpϕp + Vair + Vaggϕagg	 (2)

where ϕagg is the porosity of the aggregate (in vol. % of the 
aggregate).

Property-porosity relations
The third step of the framework uses property-porosity 

relations to predict the mechanical properties of the paste—
that is, Ep, Gp

c, and ftp′. The pore volumes and distribution 
of hydration products are parameters that affect the mechan-
ical and fracture properties.69 A higher porosity in OPC 
systems typically means a lower load-carrying capacity due 
to the lower volume of hydrates. Pores can also act as stress 
concentration sites in the hydrated OPC paste and promote 
failure under loading by introducing microcracks. Hence, 

increasing the porosity of the paste reduces the material’s 
elastic modulus, strength, and fracture energy.70

A model proposed by Jelitto and Schneider61,62 that incor-
porates the porosity and the distribution of solids is used 
to predict the mechanical properties of the paste assuming 
an open porous microstructure (when all the pores are 
connected and some of the solid hydration products [the 
load-carrying phases] are connected, with some disconnec-
tions; refer to Fig. 3 in Jelitto and Schneider61 for a sche-
matic of the model).

The Ep and Gp
c is calculated using Eq. (3) and (4), 

respectively
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where ϕp is the paste porosity (calculated using Eq. (1)); 
Ep

ϕ = 0 and Gp
ϕ = 0 are the elastic modulus and fracture energy 

of the paste at a hypothetical state of zero porosity; and d is 
a geometric parameter of the paste microstructure calculated 
using Eq. (5)
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The values of Ep
ϕ = 0 are calculated using the rule of 

mixtures (using the series model to obtain the lower bound) 
and is calculated as shown in Eq. (6)
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where Egel is the elastic modulus of the hydrated gel 
phase (considered to be 29.25 GPa47); Eub is the elastic 
modulus of the unhydrated clinker grains (considered to be 
139.90 GPa47); vub′ is the volume of unhydrated clinker in 
the hypothetical zero-porosity system; and vgel′ is the volume 
of the gel phase in the hypothetical zero-porosity system. 
The values of vub′ and vgel′ are calculated using Eq. (7) and 
(8), respectively
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The ftp′ can be computed assuming cement paste is an 
ideal brittle material with a single crack using Eq. (9). 
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where ftp′ is the strength of the paste; and a is half the internal 
crack length.
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In general, LEFM can be considered as a good approxi-
mation for cementitious pastes when the crack size is larger 
than 1 mm.71 However, for smaller-length scales, the Grif-
fith equation tends to overestimate the flexural strength of 
ordinary cement paste.71 As the crack length and represen-
tative volume decreases, the characteristic fracture length 
scale becomes relevant, and other considerations should be 
considered.54 While in this work the initial crack size was 
calculated to be 0.3 mm from the ball-on-three-balls (B3B) 
experiments, a statistical approach is also used that takes 
into account the variability in the defect size and distribution 
of defects using a Weibull distribution of tensile strength and 
fracture energy in the finite element analysis (FEA) model.

FEA-based mechanical model for heterogenous 
materials

In the fourth step, two-dimensional FEA models54 are 
created to study the tensile strength development of mortar 
composites (refer to Fig. 1, block 4) using mechanical prop-
erties for the paste matrix determined from the previous step, 
along with the morphological and mechanical characteristics 
of the aggregate and interfacial transition zone (ITZ). This 
model integrates a continuum-based finite element approach 
and a bilinear cohesive zone model to predict the resulting 
tensile strength of mortar beams. The cohesive zone model 
introduces the nonlinear fracture mechanics concepts to the 
simulation to predict the fracture behavior of quasi-brittle 
materials,72-74 representing a progressive damage zone 
behind the crack tip. The interface elements are inserted 
between the bulk elements to transfer the normal and tangen-
tial forces until debonding. For instance, a two-dimensional 
boundary value problem of the mortar representative volume 
element is shown in Fig. 2(a). Schematics of three sets of 
interface elements inserted within fine aggregate particles, 
the cement paste matrix, and their interface are shown in 
Fig. 2(b). The cohesive interface law describes the evolution 
of tensile and shear tractions in terms of both normal and 
tangential displacement jumps within interface elements.

The normal tensile and shear traction at the interface is 
determined from the cohesive interface law. The nodal 
forces in the plane of the element are computed from the 
known interface traction as � � �T N tdSS S

T , where T′ is the 
force vector (Tn and Tt); t is the computed interface trac-
tion vector (tn and tt); and Ns is the shape function vector; 
all quantities are defined in the local coordinates of the 
element. The cohesive law for interface elements is formu-
lated in terms of normal and shear components of stresses 
σ = (Tn, Tt) on the interface element and corresponding 
relative displacements u = (un, ut), shown in Fig. 2(c) and 
(d). A bilinear cohesive law in opening and shear modes 
is implemented using the finite element package Abaqus.75 
Readers are referred to Esmaeeli et al.54 for further detailed 
information on the multiscale cohesive law development 
for cementitious systems. A Weibull strength distribution is 
used to account for: 1) the presence of preexisting defects 
in the material; and 2) the fact that these defects are smaller 
than 1 mm, and this is discussed in detail in the “Results and 
Discussion” section.

MODEL VALIDATION
This study uses the modeling framework of experiments 

to calibrate and validate the Ep, Gp
c, and ftp′ calculated using 

Eq. (3), (4), and (9), and the tensile strength of mortar (ftm′) 
predicted by the FEM. The Ep, ftp′, and ftm′ were measured 
experimentally for OPC pastes and mortars across a wide 
range of porosities. Experimental data from the literature 
was also used to validate the model predictions for Ep and 
Gp

c. Five paste and one mortar samples are prepared for 
each target porosity. Table 1 depicts the mixture proportions 
for paste and mortar samples for each target paste porosity. 
Note that the water-binder ratio (w/b) and curing durations 
for the mixtures were selected using the outputs of the PPM 
to achieve a target porosity. A Type I/II cement was used 
(53% C3S, 17% C2S, 7% C3A, 9% C4AF, 0.62% Na2Oeq, 
3.8% MgO, 3% CaCO3, and 2.8% SO3).

Preparing paste cylinders
Five cylinders of 50 mm diameter and 100 mm length 

were cast to measure the Ep using ultrasonic pulse velocity 
(UPV) and ftp′ using the B3B test. The pastes were cast 
following a modified version of ASTM C305-20,76 outlined 
in Bharadwaj et al.40 and Fu and Weiss.77 The cement was 
added to the mixing bowl and thoroughly dispersed by 
dry mixing in a vacuum mixer (203 mbar = 80% vacuum) 
at 300  rotations per minute (rpm) for 90 seconds. Next, 
water was added and the cement and water were mixed for 
90 seconds at 300 rpm. The mixer was then stopped for a 
15-second rest period, during which the material collected 
on the sides of the mixing bowl and paddle were scraped 
back into the bulk of the mixing bowl. After the rest period, 
the wet paste was then mixed for another 90 seconds at 
400 rpm. After the mixing, the fresh paste was cast into poly-
urethane molds, vibrated to remove the air (care was taken 
to prevent excessive bleeding), and sealed using plastic film 
and duct tape to prevent the loss of moisture. The molds 
containing the fresh paste were rotated for 24 hours after 
casting to minimize bleeding. After 24 hours, the samples 
were double-bagged to prevent moisture loss and sealed-
cured at 23 ± 2°C until the testing age.

Preparing mortar cylinders and prisms
The mortar was mixed following the procedure outlined 

in ASTM C305-20.76 Natural river sand with a maximum 
size of 4.75 mm (passing No. 4 sieve) was used in this 
work. The sand had a specific gravity of 2.65 and an absorp-
tion capacity of 2.7%. More details about the sand can be 
found in Bharadwaj et al.16 The sand was used in its satu-
rated surface-dry state to not change the w/b of the mixture. 
The fresh mortar was placed in prism molds which were 
pre-coated with a release agent. For this study, prisms of 
125 x 25 x 25 mm were cast. The mortar-filled molds were 
vibrated to minimize entrapped air within the sample, and 
care was taken to prevent excessive segregation. The molds 
were covered with plastic wrap to minimize evaporation and 
allowed to harden for 24 hours. After 24 hours, the prisms 
were demolded and cured in saturated lime solution until the 
testing age.
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Measurement of elastic modulus using UPV test
At the testing age, the cylinders were demolded and their 

ends were cut to ensure a flat surface to maximize contact 
with the UPV equipment. A UPV test kit was used to calcu-
late the time it takes for an ultrasonic pulse to travel across 
the sample. The length of the sample was measured using 
vernier calipers, and the velocity of the sound wave through 
the sample (vpulse) was determined by dividing the measured 

sample length with the measured pulse time. The elastic 
modulus of the material (E) was calculated using Eq. (10)9

	 E vpulse�
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where ρ is the density of the material (calculated based on 
the mixture proportions); and υ is the Poisson’s ratio of 

Fig. 2—Schematic representation of two-dimensional mesostructure of heterogeneous cementitious material: (a) under mixed-
mode loading. This heterogeneous structure is composed of: (b) continuum bulk elements for paste and aggregate, and inter-
face elements for paste, aggregate, and ITZ, with cohesive law defined in: (c) cohesive opening model.

Table 1—Mixture proportions of paste and mortar mixtures

Name w/b Target ϕp
* Curing time, days Cement, kg/m3 Water, kg/m3 Sand, kg/m3

Paste

P-30 0.35 30% 56 1498 524 —

P-35 0.40 35% 56 1394 558 —

P-40 0.50 40% 56 1223 612 —

P-45 0.50 45% 10 1223 612 —

P-50 0.60 50% 10 1090 654 —

P-60 0.65 60% 3 1034 672 —

Mortar†

M-45 0.50 45% 10 612 306 1361

*ϕp are rounded to nearest 5%.
†Mortar samples are 50% paste by volume.
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the material (considered to be 0.29 for pastes and 0.20 for 
mortars from the literature77,78).

Measurement of strength using B3B test
The ftp′ was measured using the B3B test using 2.54 mm 

slices cut from the cylinders using a precision saw. The B3B 
test is an experimental approach for estimating the tensile 
strength of a thin disk-shaped sample loaded with the fourth 
ball from the top opposite the three balls.77,79-82 Börger et al.79 
stated that this test is free of alignment errors with less than 
2% characteristic error. It should be noted that the strength 
obtained by this is higher than that of beam tests, but this 
is likely due to size effects. Fu and Weiss77 suggested that 
samples tested with an effective volume lower than 100 mm3 
for paste samples are unlikely to exhibit a size effect.

The tensile strength of paste material is determined by 
calculation of maximum principal stress at the center of the 
disk using Eq. (11)77
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where R is the radius of the disk (mm); Ra is the radial 
distance from the center of the disk to the center of the 
support balls (mm); and c0 to c6 are dimensionless constants 
which are functions of Poisson’s ratio and Weibull modulus 
listed as follows: c0 = –16.35, c1 = 20.78, c2 = 622.62, c3 = 
–76.88, c4 = 50.38, c5 = 33.74, and c6 = 0.06.

Measurement of strength using three-point 
bending test

The tensile strength of the mortar prisms (ftm′) is measured 
using the three-point bending (3PB) test following the proce-
dure in ASTM C78/C78M-21.83 In this study, the tensile 
strength of one mortar mixture with a w/b of 0.50 cured for 
10 days (target paste porosity of 45%) was measured exper-
imentally. A beam of 25.4 mm depth x 25.4 mm width x 125 
mm length was tested. The tensile strength of the sample is 
calculated based on the recorded peak load (Ppeak), loading 
span (L), width (B), and thickness (D) of samples using 
Eq. (12)
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RESULTS AND DISCUSSION
Thermodynamic modeling and pore partitioning 
model

The first two steps of the framework proposed in this 
paper are the thermodynamic model and PPM, respectively. 
Figure 3(a) shows the output of the thermodynamic model 
(that is, volume fractions of reaction products) at the target 
porosity values. In general, an increase in the porosity is 
achieved by either an increase in the w/b or a decrease in 

the curing age (which translates to a lower overall DOH of 
the system). Therefore, systems with a higher porosity have 
a higher volume of pore solution in the system. The volume 
fraction of the reaction products is also lower in systems 
with a higher target porosity. The volume of unhydrated 
cement decreases as the water-cement ratio (w/c) increases 
at a given age due to an increase in the DOH at a given 
age (refer to porosity values of 30 to 40% and 45 to 50%). 
A decrease in the curing time at a given w/b results in the 
volume fraction of unhydrated cement increasing due to a 
lower DOH in systems cured for shorter durations (porosity 
values of 40 to 45% and 50 to 60%).

Figure 3(b) shows the Powers-Brownyard phases of the 
systems as a function of their target porosity. As the target 
porosity increases, the volume of capillary water increases 
as the increase in target porosity is achieved by increasing 
the w/b and/or reducing curing time. For the same reason, 
the volume of hydration products, gel solids, and gel pores 
decrease with increased target porosity.

Property-porosity relations
It is well-established that the pore network of cementi-

tious materials is connected with disconnections existing 
between some portion of the pores84 and some portion of 
the gel solids.85,86 In the property-porosity relations used 
(refer to Eq. (3) and (4)), the parameter n is related to the 
disconnections in the gel solids phase and is estimated by 
fitting the equation to the experimental measurements of 
elastic modulus. The Ep obtained from the UPV test is the 
dynamic modulus, and the static modulus is obtained by 
scaling down the measured value of Ep by 0.75 based on 
experimental observations in Trifone87; however, it should 
be noted that the mechanical properties used in this paper 
are a normalized value (that is, Ep/Ep

ϕ = 0), so this scaling is 
only performed for the experimentally obtained Ep in Fig. 4. 
Figure 4(a) shows a plot of the model predicted (lines) and 
experimentally measured (markers) Ep/Ep

ϕ = 0 as a function 
of the paste porosity. From the model predictions, it is seen 
that an increase in porosity decreases the Ep as there is a 
higher volume of voids and a lower volume fraction of load- 
carrying gel solids. At a given porosity, an increase in the 
parameter n leads to a lower Ep as n indicates the disconnec-
tions in the load-bearing phase. In general, the experimental 
measurements follow the trend of the model predictions, and 
all but one data point lie within n = 0.5 ± 0.15. The value of 
n = 0.5 is chosen for this work as it fits the experimental data 
to within 7%.

Figure 4(b) plots Gp
c/Gp

cϕ = 0 as a function of porosity. 
An increase in porosity leads to a lower Gp

c due to a lower 
amount of solid material, and an increase in n leads to 
a lower Gp

c at a given porosity due to an increase in the 
disconnectivity in the solid phase. The predictions of Gp

c for 
the limited experimental data from the literature88,89 is within 
3% for n = 0.5, supporting the chosen value of n.

Figure 4(c) shows the model predicted ftp′ and the experi-
mentally measured ftp′. An increase in the porosity decreases 
the ftp′ as the voids in the paste increase. An increase in n 
decreases the ftp′ as the number of disconnections in the load-
bearing hydrate phases increases. The predicted ftp′ is within 
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2% for n = 0.5, supporting the chosen value of n. The devia-
tion of the data point at ϕp = 60% from the trend line is likely 
due to the high w/b and low curing age chosen, resulting in 
a larger disconnectivity in the load-bearing phases, resulting 
in a lower Ep and ftp′.

Numerical predictions of mortar
Finite element model—The flexural strength of mortar 

(ftm′) is predicted using a finite element approach. A compu-
tational model of the 3PB test is created to predict the ftm′. 
The boundary conditions are simulated as rigid rollers with 
frictionless contact between the rollers and the mortar beam 
(Fig. 5(a)). A plain strain condition is chosen for the model, 
and the load is applied directly by the top roller, which is 
subjected to a prescribed displacement (δ). It is considered 
that the fracture process takes place inside a representative 
volume element (RVE),90 which contains the geometry and 
spatial distribution of different phases. In this study, the RVE 
contains three phases: cement paste, aggregate, and their 
ITZ. The mesostructure of the RVE is generated by scanning 
an optical image of a mortar sample and then importing it 
as a finite element mesh for the numerical analysis (refer 

to Fig. 5(b)). After generating the RVE, the cohesive inter-
face elements are inserted into the model54 (refer to Fig. 5(c) 
and (d)). To improve the computational efficiency, the RVE 
with cohesive interfacial elements is only embedded into the 
midspan of the mortar beam where the fracture process takes 
place. It is assumed that the region outside the RVE is free of 
inelastic deformation, damage, or cracks and is modelled as 
a continuum material representing the mortar with homoge-
nized properties. To determine the size of the RVE and avoid 
boundary effects, an RVE size analysis is performed (refer to 
Appendix A* for details).

A Weibull distribution is employed in the FEM to account 
for the effect of preexisting cracks on the resulting ftm′ 
prediction. It is considered that the preexisting cracks only 
occur in cement paste and the ITZ and assumed that the 
aggregate is free of preexisting cracks (that is, ftp′, Gp

c, ftITZ′, 
and �GITZ

c  have variability in the model). The Weibull distri-
bution for the ftp′ is given by Eq. (13),91 and the form of the 
Weibull distribution for the other parameters is similar.
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where ftp′ is the nominal strength; and m is the Weibull 
modulus, which controls the shape of the distribution around 
ftp′. The value of m for brittle materials, such as mortar and 
cement paste, can generally take a value between three and 
10.92,93 Figure 6(a) shows an example statistical histogram 
for the Weibull distribution of ftp′ with m = 5. Figure 6(b) 
shows an example where each cohesive element contains a 
different value of ftp (represented by color map).

Determination of E, ft′, and Gc—As shown in Fig. 5(a), 
the region of the mortar prism outside the RVE is modeled 
as a continuum material. As such, the E, ft′, and Gc of the 
components of mortar (that is, the cement paste, aggre-
gate, and the ITZ) need to be determined. For the cement 
paste, aggregate, and ITZ, the E for continuum elements, 
and the ft′ and Gc for cohesive elements need to be deter-
mined. The Ep, Gp

c, and ftp′ are calculated from the porosity- 
properties relations using the values of n = 0.5 and n = 1. 
The mechanical properties of the ITZ are difficult to char-
acterize as they are affected by the aggregate surface rough-
ness, aggregate types, and sample curing conditions.94,95 
Experimental results show that the ITZ is typically weaker 
than the cement paste.96-100 As such, the ftITZ′ and GITZ

c  are a 
fraction of the ftp′ and Gp

c. Following the literature,96,97 the 
ftITZ′ is 25% of the ftp′, and the GITZ

c  is 25% of the Gp
c. The 

Eagg, Gagg
c , and ftagg′ are obtained from Weiss et al.98 Table 2 

shows an example of the values of the mechanical proper-
ties that are used as inputs for the model for one system (ϕp 
= 30%). For the systems with other ϕp, the properties are 
obtained in a similar manner.

Influence of Weibull distribution on ftm′ prediction—
After the mechanical properties of the cement paste are 

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.

Fig. 3—Plots of: (a) reaction products; and 
(b) Powers-Brownyard phases as function of total porosity 
of paste. (Note: These plots are function of porosity as 
experiments were designed to capture behavior of property- 
porosity relations at wide range of porosities.)
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determined, a Weibull distribution is applied to the cement 
paste and ITZ strength and fracture energy to represent 
mortar samples with the same material properties but with 
random distributions of preexisting cracks. Four models for 
beams (with dimensions of 25 x 25 x 125 mm3) under a 3PB 
loading condition are developed with the same RVE, mate-
rial properties (cement paste with ϕp = 30% and n = 1), and 
Weibull modulus m. The value of m is assumed to be the 
same for the paste and ITZ and is considered as 5 following 
Esmaeeli et al.54 The only difference between these models 
is the distribution of preexisting cracks in the RVE obtained 
from Weibull distributions. Figure 7(a) presents the simula-
tion results of flexural stress-deformation curves for these 
four models. Up to a displacement value of 0.057 mm, all 
the models overlap; however, the samples failed at different 
stresses due to the random distribution of preexisting cracks. 
The model predicts a ftm′ of 12.84 ± 0.50 MPa. From the 3PB 
experiment described in the previous section, the standard 
deviation in the measured flexural stress is 0.53 MPa, which 

is consistent with the numerical prediction. Only the stan-
dard deviation of the experimental results and model predic-
tions are compared to validate the variation in the flexural 
strength prediction caused by the Weibull distribution; the 
average flexural strength will be discussed in a later section. 
From Figure 7(b), two crack patterns from the simulations 
are observed. Similar to the observations on the crack path in 
the experiment, the cracks propagate in different paths due to 
the random distribution of preexisting cracks. These consis-
tencies between experiments and simulations support the 
validity of the model and indicate that m = 5 is appropriate 
for the ftm′ prediction.

Influence of aggregate shape and distribution on ftm′ 
prediction—Three beam models (with dimensions of 25 x 
25 x 125 mm3) are studied under 3PB loading conditions 
to study the influence of aggregate shape and distribution. 
Studying the influence of aggregate size and minerology on 
the fracture behavior is outside this paper’s scope and can be 
found in Esmaeeli et al.106 and Santos et al.107 Studying the 

Fig. 4—(a) Elastic modulus; (b) fracture energy; and (c) tensile strength of paste as function of paste porosity.
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applicability of the model with different aggregate miner-
alogies is scope for future work. The material properties 
(cement paste with ϕp = 30%, n = 1, and m = 5), RVE size 
(Appendix A), and aggregate volume fraction (Appendix B) 
are identical for the three beams. Four simulations for each 
RVE are performed with the same Weibull parameters to 
account for the random preexisting cracks (indicated by the 
standard deviation in the ftm′ predictions). Figure 8 shows the 
ftm′ predictions, RVEs, and crack patterns in the RVEs. The 
ftm′ predicted for RVE (No. 1), (No. 2), and (No. 3) (which 
represent three different aggregate shapes and distributions 
generated) are 12.84 ± 0.50 MPa, 13.49 ± 0.49 MPa, and 
12.64 ± 0.64 MPa, respectively. The average ftm′ prediction 
for the three RVEs is 12.99 ± 0.44 MPa. The standard devia-
tion of the experimentally measured ftm′ is 0.53 MPa, which 
is consistent with the numerical prediction. The comparison 
of the variability indicates that the variation of ftm′ prediction 
due to the different aggregates shape and spatial distribu-
tion is reasonable, and the ftm′ predictions remain within the 
margin of experimental accuracy.

ftm′ prediction for mortar with different ϕp—After deter-
mining material properties and validating the FEA model 
framework, the influences of porosity (ϕp) on the ftm′ predic-
tions are studied. As mentioned in the previous section, 
3PB experiments for mortar beams (25 x 25 x 125 mm3 and 
ϕp = 45%) were conducted. A model for the same beam is 

Fig. 5—(a) Schematic of FEM showing loading conditions for 3PB test; (b) optical image of mortar sample and digitized meso-
structure of RVE (inset green box; length of white line indicates 5 mm); (c) RVE and FEM mesh; and (d) details of FEM mesh 
includes aggregates, paste, and ITZ between them. (Full-color PDF can be accessed at www.concrete.org.)

Fig. 6—(a) Histogram for Weibull distribution of ftp′ (orange 
curve represents Eq. (13)); and (b) example of cohe-
sive element strength distribution (triangular continuum 
elements were shrunk for illustration purposes). Color map 
represents ftp/ftp′ values. (Full-color pdf can be accessed at 
www.concrete.org.)

Table 2—Material properties of cement paste, ITZ, 
and aggregate

Properties ft′, MPa Gc, N/mm E, GPa

Paste, ϕp = 30%, n = 0.5 29.4 0.051 26.9

Paste, ϕp = 30%, n = 1 24.6 0.045 23.9

ITZ, n = 0.5 7.3 0.013 —

ITZ, n = 1 6.1 0.011 —

Aggregate 9.8 0.120 65.2
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developed to validate the ftm′ prediction. In addition, simu-
lations for mortar beams with ϕp of 30, 39, and 55% are 
also performed to investigate the influence of ϕp on ftm′. The 
model is run for two values of the disconnection parameter n 
(n = 0.50 and n = 1) to simulate the typically observed range 
of n in OPC pastes.

Figure 9 presents the ftm′ predictions and the experiment 
results for mortar beams with different ϕp. The measured ftm′ 
at ϕp = 45% is 8.44 ± 0.53 MPa and the ftm′ predicted by 
the model is 9.69 ± 0.21 MPa (for n = 0.5). The range of 
experimental ftm′ (7.72 to 9.43 MPa) lies within the exper-
imental margin of error (±1.5 MPa) to the model predicted 
ftm′ (9.33 to 9.87 MPa). Two data points from the litera-
ture101,102 are also plotted. The data point at ϕp = 52% ± 2% 
is closer to the n = 1 model curve, likely due to the early 
age of testing (3 days), resulting in a higher n. From the ftm′ 
predictions results, it can be observed that as the ϕp of the 

mortar increases, the ftm′ of the mortar decreases, which is 
consistent with results from the literature.99,103 The results 
suggest that the modeling can capture the influence of paste 
porosity (predicted from thermodynamic modeling) on the 
ftm′ development. The data to support each step of the model 
is in the typical range of ϕp seen in concrete (30 to 55%) and 
obtaining data beyond this range is scope for future work.

CONCLUSIONS
This paper described a four-step approach to predict the 

mechanical response of ordinary portland cement (OPC) 
systems. The first step in this process is the use of a ther-
modynamic model to predict the reaction products of the 
hydration reaction. The second step is using the results of 

Fig. 8—Flexural strength predictions and crack patterns 
from three RVEs with different aggregate shape and 
distribution.

Fig. 9—Experiment and simulation results for mortar beams 
with different ϕp; red and greed dashed lines are trend lines 
of simulation predictions with two values of disconnection 
parameter n (n = 0.50 and n = 1). (Note: Trend lines are 
intended to be visual guides; full-color PDF can be accessed 
at www.concrete.org.)

Fig. 7—(a) Simulation results of flexural stress versus defor-
mation curves for samples with same material parameters 
but random distribution of preexisting cracks; and (b) two 
crack patterns due to random distribution of preexisting 
cracks. Color maps represent random distribution of preex-
isting cracks (crack pattern No. 1 on top; crack pattern 
No. 2 on bottom). (Full-color PDF can be accessed at www.
concrete.org.)
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thermodynamic modeling as inputs to using a pore parti-
tioning model (PPM) to predict the porosity and pore 
volumes (volumes of gel pores, capillary pores, and pores 
due to chemical shrinkage) in the hydrated paste. The third 
step calculates property-porosity relations to predict the 
mechanical properties of the paste—that is, the Ep, Gp

c, and 
ftp′ as a function of the porosity. The disconnections in the 
hydrated gel solids (that is, the n value) is calibrated using 
experimental data, and using the value of n, the Gp

c and ftp′ 
are predicted. The fourth step in this paper is the use of finite 
element models (FEMs) to predict the mechanical behavior 
of mortars made with the OPC using the mechanical prop-
erties of the paste (from step 3) as the inputs. The model 
is run for two values of the disconnection parameter n (n = 
0.50 and n = 1) to simulate the typically observed range of 
n in OPC pastes; the model predictions (7.54 ± 0.35 MPa to 
9.69 ± 0.21 MPa) are similar to the experimental measure-
ments (8.44 ± 0.53 MPa) for the mortar beam with ϕp = 
45%, within the margin of experimental error. This four-
step approach natively considers the binder chemistry to 
predict the mechanical response of cementitious pastes 
and concrete. It can be coupled with a performance-based 
mixture design framework8 to natively predict the concrete’s 
flexural strength. Overall, this work is a step toward self-suf-
ficient models that predict concrete performance,45 which 
can be used as tools to better design low-carbon concrete.
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The American Concrete Institute (ACI) is a leading authority and 
resource worldwide for the development and distribution of 
consensus-based standards and technical resources, educational 
programs, and certifications for individuals and organizations involved 
in concrete design, construction, and materials, who share  
a commitment to pursuing the best use of concrete.

Individuals interested in the activities of ACI are encouraged to 
explore the ACI website for membership opportunities, committee 
activities, and a wide variety of concrete resources. As a volunteer 
member-driven organization, ACI invites partnerships and welcomes 
all concrete professionals who wish to be part of a respected, 
connected, social group that provides an opportunity for professional 
growth, networking, and enjoyment.




